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Abstract

The paper discusses covering of an input space by a rule base of a radial
fuzzy system. We address the question of what is the minimal degree of
firing of a radial rule base across the input space? This minimal degree is
called the degree of covering (DOC). For radial rule bases, a search for the
DOC leads to a constrained optimization problem. This generally hard
problem can be eased by passing to convex optimization, however, for the
price of obtaining only a lower bound for DOC.
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1 Introduction

The heart of a fuzzy system is its rule base. It is well known that, mathe-
matically, it represents a fuzzy relation on the Cartesian product of input and
output spaces of the system. The relation is canonically established on the basis
of individual IF-THEN rules that are combined into the rule base.

A set of IF-THEN rules constituting a rule base of a fuzzy system can be
identified by questioning experts in a given field. This approach is effective if the
relation encoded by the rule base is not highly multidimensional and maximally
dozens of rules are introduced. The more progressive way, due to the rise in
technology of data acquisition and storage, is to establish the fuzzy system’s
rule base directly from data associated with the field of interest.

A question arises, especially in connection with the data-driven approach,
whether there is for each input at least one rule that is fired in a sufficient
degree, i.e., if we are ensured by a certain minimal degree of firing (DOF) for
each possible input. This can be interpreted that we require that our knowledge
about the domain of interest the fuzzy system operates on is sufficiently reliable.

If a fuzzy system is build up directly from data, then rules are typically
created on the basis of some clustering algorithm and no regular structure is
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recognized on introduced fuzzy sets. The reason is that clustering algorithms
locate antecedents of IF-THEN rules into the areas with a high density of clus-
tered data and cases of uncovering of other areas may arise. As a consequence, a
given minimal degree of firing across the input space, which we call the degree of
covering (DOC), is not inherently guaranteed and has to be examined ex-post.

In the paper we address this ex-post examination. We show that it can be
effectively performed for the class of radial fuzzy systems. These systems posses
a special shape preservation property that enables us to translate the DOC
question to a constrained optimization problem. As these optimization problems
are generally hard we will show that the optimization can be transferred to the
convex case, but for the price of obtaining only a lower bound for DOC.

The rest of the paper is organized as follows. The next section provides
the reader with a short introduction into the radial fuzzy systems. Section 3
deals with the covering problem and relates it to the constrained optimization
problem. Section 4 concludes the paper.

2 Radial fuzzy systems

We generally consider fuzzy systems in the MISO (multiple-input single-output)
configuration and consisting of m IF-THEN rules. Antecedents of rules are
therefore represented by multidimensional fuzzy sets Aj(x), j = 1, . . . ,m and
the system encodes a function from an input space X ⊆ Rn into an output space
Y ⊆ R.

In radial fuzzy systems, we consider that in the i-th dimension, i = 1, . . . , n,
n ∈ N the one-dimensional fuzzy sets are specified according to formula

A(xi) = act

(
|xi − a|

b

)
(1)

where a ∈ R is the central point; b > 0 is a scaling parameter and act is a non-
increasing shape function such that act(0) = 1 and limz→0 act(z) = 0. Hence,
the membership functions of such a defined one-dimensional fuzzy sets are radial.
Notorious examples of these sets are the symmetric triangular fuzzy sets with
act(z) = max{1 − z, 0} and Gaussian fuzzy sets with act(z) = exp(−z2), see
Fig. 1.

In multiple dimensions, a membership function of a radial fuzzy set writes
as

A(x) = act (||x− a||b) (2)

where || · ||b is a scaled `p norm with the scaling parameter b = (b1, . . . , bn).
These norms are specified for p ∈ [1,∞) and u ∈ Rn as

||u|| =

(
n∑

i=1

(|ui|/bi)p
)1/p

(3)

and ||u|| = max{|u1|, . . . , |un|} for p =∞.
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Figure 1: An example of one-dimensional radial fuzzy sets; (a) triangular fuzzy
set; (b) Gaussian fuzzy set.

The well-known examples of these norms are the scaled `1 (p = 1) norm, and
the Euclidean (p = 2) and cubic (p =∞) norms. The latter two norms we will
denote by ||·||Eb

and ||·||Cb
, respectively. We can easily see that the multivariate

version (2) is an extension of the univariate case (1); and (2) represents a radial
function as it is well-known in the theory of radial basis neural networks [3].

The radial property then requires that the following equality holds when
one-dimesional fuzzy sets are combined by a fuzzy conjunction ? (for all rules
j = 1, . . . ,m):

act

(
|x1 − aj1|

bj1

)
? . . . ? act

(
|x1 − ajn|

bjn

)
= act(||x− aj ||bj

) (4)

In (4), we have aj = (aj1, . . . , ajn) and bj = (bj1, . . . , bjn); and paraphrasing
it in words, it says that the shape (the act function) of one-dimensional fuzzy
sets is preserved after their combination into a multidimensional fuzzy set by a
selected fuzzy conjunction.

Note that a selection of the act function and the t-norm ? representing a
fuzzy conjunction in (4) is not completely free. For example, when triangular
fuzzy sets are combined by a product t-norm one does not obtain a multidimen-
sional triangular fuzzy set. Concerning the question what shapes and t-norms
can be combined the reader is referred to [2] where the allowed combinations
are thoroughly discussed. However, generally speaking we can say that if the
employed t-norm is minimum, then (4) holds for any act function with || · ||bj

being the scaled norm, i.e., p = ∞. In the case of an Archimedean t-norm
[4, 5], the act function has to correspond to the pseudo-inverse of its additive
generator t(−1) in such a way that act(z) = t(−1)(qzp), for q > 0 and p ∈ (1,∞),
in order to the radial property (4) hold.

2.1 Examples of radial fuzzy systems

Let us present two most important examples of radial fuzzy systems. These are
the Mamdani and Gaussian fuzzy systems. An example of antrecedents of these
systems in the two-dimensional case is presented in Fig. 2.
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Figure 2: An example of two-dimensional radial fuzzy sets; (a) Mamdani fuzzy
system; (b) Gaussian fuzzy system.

2.1.1 Mamdani fuzzy system

In this system, the t-norm is the minimum and the shape function is specified as
act(z) = max{0, 1−z} yielding the triangular membership functions. The com-
bination of one-dimensional triangular fuzzy sets yields a multivariate triangular
fuzzy set in the form of Aj(x) = act(max{|x1− aj1|/bj1, . . . , |xn− ajn|/bjn}) =
max{0, 1− ||x− aj ||Cbj

}, j = 1, . . . ,m.

2.1.2 Gaussian fuzzy system

In this system the act function writes as act(z) = exp(−z2), the employed
t-norm is the product. The additive generator of the product t-norm is t(z) =
− ln(z) and its pseudo-inverse t(−1)(z) = exp(−z). Thus, setting q = 1, p = 2
gives the specification of the act function as presented. Clearly, this specification
yields the membership functions of fuzzy sets being Gaussian curves and the
radial property is related to the well-known fact that a product of Gaussian
curves provides again a Gaussian curve. Mathematically, the employed norm is
the scaled Euclidean norm so antecedents writes as Aj(x) = exp(−||x−aj ||2Ebj

),

j = 1, . . . ,m.

3 Degree of covering

The benefits of the radial systems can be identified when we deal with the
question of the minimal degree of firing (DOF) across an input space of the
system, i.e., with the question of the degree of covering (DOC).

Let the input space of a radial fuzzy system be X ⊆ Rn and the rule of
the system consists of m ∈ N rules with antecedents Aj(x) = Aj1(x1) ? · · · ?
Ajn(xn) = act(||x− aj ||bj

). We ask what is the minimal degree of firing of the
rule base of the system across X, that is we are looking for the value of

DOC = min
x∈X
{max{A1(x), . . . , Am(x)}}.
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Because act is a non-increasing function we have the following chain:

DOC = min
x∈X
{max

j
{Aj(x)}}

= min
x∈X
{max

j
{act(||x− aj ||bj

)}}

= min
x∈X
{act(min

j
{||x− aj ||bj})}

= act(max
x∈X
{{min

j
{||x− aj ||bj

}}).

Searching for the maxima of minj{||x− aj ||bj} over X is a constrained op-
timization problem which must be generally solved numerically. On the other
hand, due to the radial character of Aj(x) we can identify a lower bound for
DOC (denoted DOC∗) in such a way that it leads to the constrained optimiza-
tion problem for a convex function [1].

Indeed, minj{||x− aj ||bj
} ≤ 1/m

∑
j ||x− aj ||bj

, and therefore one has

DOC ≥ DOC∗ = act

 1

m
max
x∈X

∑
j

||x− aj ||bj


 . (5)

Maximization of function f(x) =
∑

j ||x − aj ||bj , x ∈ X has to be done again
numericaly, but f(x) is a convex function so the optimization is practically much
easily tractable than in the general case.

To show that f(x) is a convex function remind that norms and therefore also
scaled `p norms are convex functions on Rn. A function h : Rn → R is convex
if for any two x1,x2 ∈ Rn, α ∈ [0, 1] and β = 1 − α one has h(αx1 + βx2) ≤
αh(x1) + βh(x2). Thus, due to the convexity of `p norms, we have for any
x1,x2 ∈ Rn and α ∈ [0, 1], β = 1− α the following:

||αx1 + βx2 − aj ||bj
≤ α||x1 − aj ||bj

+ β||x2 − aj ||bj
.

Because f(αx1 + βx2) =
∑

j ||αx1 + βx2 − aj ||bj
one has

f(αx1 + βx2) ≤ α
∑
j

||x1 − aj ||bj
+ β

∑
j

||x2 − aj ||bj
,

f(αx1 + βx2) ≤ αf(x1) + βf(x2),

which is the announced convexity of function f(x).
Apparently, limx→∞ f(x) = ∞. However, we consider a constrained opti-

mization problem for x ∈ X. Because f(x) is convex, every local maxima is
also global maxima, and the extreme is reached at the boundary of X if X is
compact subset of Rn.

4 Conclusions

In the paper, we have addressed the question of the reliability of knowledge
stored in a rule base of a fuzzy system. Quantitatively, this reliability is ex-
pressed as the minimal degree of firing (DOF) across the input space of the
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system. This minimal degree is denoted as the degree of covering (DOC) of the
rule base of the system.

We have discussed the specification of the DOC for the case of radial fuzzy
systems. As the result, we have shown that it leads to a constrained opti-
mization problem that has to be generally solved numerically. However, due to
the specific properties of radial systems, we have shown that a lower bound on
DOC can be specified on the basis of maximization of a convex function, which
is computationally more tractable than the general case.
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