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Abstract: The presented research targets the problem of mobile robot navigation in 
environments that contain both static and dynamic obstacles. The aim of 
this article is to present a new path-planning algorithm that provides a 
collision-free trajectory within an uncertain workspace. The developed 
solution is based on a mix of 2 AI techniques: Q-learning and neural 
networks. The experimental results prove the value of the approach. 
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1. Introduction 
Path planning was always a key feature in the development of autonomous mobile 
robots. Over the last 3-4 decades, this subject was divided into 2 research areas, 
considering the information of the environment held by the mobile robot [1].  

The first research area is based on the global knowledge of the environment. At each 
moment, the robot poses complete information about its location within the workspace, 
the workspaces itself and the physical constrains of the scene (movement limitations, 
obstacles, target position and so on). The main problem that needs to be dealt with is 
localization. Let C be a configuration space that describes all possible configurations of 
robot. Assuming that navigation is performed in a 2D environment, we practically deal 
with 2 workspaces: the obstacles workspace – Cobs, and the free workspace – Cfree. At 
the moment, interacting in Cfree is possible thanks to a wide variety of algorithms and 
methods such as particle filter localization [2], Wireless Localization based on RSSI [3], 
Simultaneous Localization And Mapping [4], and others. A main role is played by the 
robot’s sensorial system, which can use GPS, cameras, environment markers and others.  

The second approach deals only with local information which is retrieved by 
proximity sensors such as sonar [5], infrared [6], laser [7] or video [8]. The key issue is 
that there is no guarantee of convergence (target reach). Local minima also pose 
navigation difficulties.  

Path planning problem was solved by different kinds of solutions: potential fields, 
geometrical, grid-based or even artificial intelligence (AI) driven. We adhere to the last, 
using a specific reinforcement learning technique called Q-learning, due to several 
advantages. Q-learning was introduced in 1989 [9]. One of its strengths is that it doesn’t 
require any previous information about the environment. After defining a reward (cost) 
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function, the robot that uses Q-learning finds the optimal path (maximum achievable 
reward) unattended.  

One of the first studies that has implemented Q-learning in robot navigation used a 
relatively simple reward function (eq. 1). 1 was assigned to the goal state, -1 for 
collision state and 0 for any other states [10]. Although the results were promising (the 
robot eventually converged to the solution), the computation times were high. Q-
learning based robot navigation was greatly improved in [11], but still, over 100 training 
iterations are required to train the Q-table (the matrix holding Q-values). 

Some studies tried to combine Q-learning with other means of AI, in order to increase 
the computation performance. In order to handle large sets of state-action pairs, neural 
networks were used to store and compute Q-values. A multi-layer neural network is able 
map non-linear functions [12]. This feature can be used in conjunction with 
reinforcement learning in order to solve the path planning problem, given prior 
knowledge of the environment. For this specific case, Q-learning [13] was used with the 
following function that quantifies the quality of a state-action: 

               (1) 

where Q is the set of solutions, S is the set of states and A is the set of actions. The cost 
or better said the reward for a collision-free trajectory is given if the mobile robot 
reaches the goal. In other words, the proposed solution samples each state, action and 
result from the workspace as an underlying probability distribution which helps in 
calculating the reward parameter. For fast convergence, the solution makes further use 
of a feed-forward neural network.  

2. Trajectory planner 

2.1. The algorithm 

The path planning algorithm presented this paper presents is implemented in a trajectory 
planner based on Q-learning [14] and neural networks that can be regarded as a “self-
learning” system. A slightly different solution was already applied with success in 
manoeuvring robotic arms [15].  

The problem of achieving a collision-free trajectory in dynamic environments has 
been reformulated mathematically. Let A be an array of 2D Cartesian coordinates, with 
ps the starting position and pe the end position of the mobile robot. The kinematic 
mapping of the trajectory of the robot is described as: 

  the Cartesian coordinates at moment t     (2) 

Let the sets of points O1(t), O2(t), ..., On(t) represent the n obstacles located in the 
workspace at moment t. Given the start configuration , avoiding obstacles and 
reaching the goal  resumes to finding  while satisfying both 
equations: 
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     (3) 

   (4) 
The problem described above can be solved with Q-learning and neural networks. At 

any given time t, the mobile robot is in an intermediate state pt and can choose among 
different possible future states. The two conditions formulated in eq. 3 and eq. 4 can be 
represented within the trajectory planner architecture proposed in fig. 1. 

 
Figure 1. Trajectory planner structure 

The eq. 3 means that the mobile robot achieves the target (the algorithm converges).  
This condition is modelled by Pos-Net, a 30-20-3 Multi-Layer Perceptron (MLP). 
Preliminary tests showed that this configuration is suitable and provides a good 
mapping of this nonlinear problem. Pos-Net receives as input the  vector which 
contains the current position of the robot, the time sample t and the matrix of Q-values. 
It outputs a 3 element vector which holds the Cartesian values and the time. The weights 
of Pos-Net are updated after each step using the adapt function, which receives as input 
the Cartesian coordinates of the goal. After adapt function is applied, a 3 value output 
vector is obtained (x, y, t). If a collision is obtained or the maximum number of steps 
has been reached without reaching the goal, the weights of Pos-Net are initialized and a 
new global iteration is started. Each state has assigned a Q-value that quantifies the 
condition expressed in eq. 4. Q-values are updated at each step of the iteration, and 
provide information about the collision state. Q-values are computed as described in the 
following section and are sent back as input to Pos-Net after each iteration. 

2.2. The reward function 

The reward function quantifies the decision process, evaluating a score for each action 
taken at a given state. The set of states was clustered into 4 types: Safe Sates – SS 
(when the robot has a low possibility to collide with an obstacle), Non-Safe Sates – NSS 
(when the robot has a high possibility to collide with an obstacle), Wining State – WS 
(when the robot reached the goal) and Failure State – FS (when the robot collided with 
an obstacle). The reward function is similar to the one proposed by Jaradat [11]:  

   (5) 

where n is the step number and  the distance to the closest obstacle. 
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3. Simulation and results 
The experiments conducted in this work were implemented in MATLAB, C++/VRML 
and on a real robot: PowerBot. The real working environment and its simulated 
equivalent are presented in fig. 2. 

 
Figure 2. A 7m x 8m workspace with a robot, obstacles and a target  

Safe testing was one of the prerequisites of this study. Testing path planning 
algorithms in real environments imposes additional work focused on solving security 
issues, hardware malfunctions, software errors and eventual injuries that may appear. 
Using VR eliminates all these issues. However, every study should consider at some 
point implementing the theoretical research in practice. Every scene entity was carefully 
measured, in order to obtain the best possible virtual model. There have always been 
inconstancies between real and virtual environment, inconstancies which appear due to 
the inexact nature of the measuring process, the friction coefficient, battery power levels 
and so on. These differences slightly influence the real trajectories, thus the data 
received from the proposed solution is spitted into several parts that wait manual 
approval before continuing the robot movement. 

The proposed scenario contains 7 static and 2 dynamic obstacles. The start position of 
the robot is (70; 50) and the target position (marked with a small red circle in fig. 2) is 
(600; 570). The robot is oriented  between OY and OX. The dynamic obstacles are 
constructed using 2 Amigobot robots covered with a paper cylinder, a setup which 
enables their observation by Powerbot’s laser ranger sensor, which scans for obstacles 
30cm above the soil (fig. 3). In MATLAB, the robot converges after just 2 epochs, at 
the 12th iteration (fig. 4)  

 
Figure 3. Amigobots used as mobile obstacles  
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Figure 4. Test scenario  

The Amigobots continuously run a movement program which enables them to move 
smoothly back and forth on a straight line, between the obstacle and the wall. Near the 
obstacles, their sonar readings are lower than 400, thus they stop and change their 
movement direction.  

The distance travelled by Powerbot is measured odometrically, based on the signals 
received from the motor encoders mounted on its wheels. The distance travelled is 
measured using TicksMM parameter, which quantifies this distance based on the 
number of wheel rotations. TicksMM is defined inside Powerbot’s proprietary software, 
ARCOS, and it varies depending on the load of the robot and on the tire pressure. An 
initial calibration is made by measuring TicksMM parameter resulted from 1m 
movement. After this phase, determining the length of the entire trajectory is fairly easy, 
as the TicksMM value can be divided by the 1m calibration value in order to find the 
travelled distance in meters. The final length of the trajectory is 9.97 m. The speed of 
the robot is initially set at 0.5m/s, and the time spent to reach the target is 23.7s. The 
robot is thus moving with a real speed of 0.42 m/s. 

4. Conclusions 
This paper proposes a new path planning algorithm, with a good convergence ratio, 
which is implemented successfully in real and virtual environments containing multiple 
static and dynamic obstacles. The trajectories found by the proposed algorithm are 
secure, as they specifically take into consideration the geometrical factors posed by the 
obstacle avoidance problem. Using VR modelling such as described in this study 
provides safer and easier testing capabilities.  
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