
Integration of Model Based Prediction into Complex
Event Processing Applications

Bogdan Târnaucă1, Florin Moldoveanu2, Constantin Suciu3, Lucian
Mircea Sasu3, Dan Puiu3

1Siemens Corporate Technology, Braşov, Romania
E-mail: bogdan.tarnauca@siemens.com

2Transilvania University of Braşov, Romania
3Siemens Corporate Technology, Braşov, Romania

Abstract: This paper reviews two major data–consumers: Complex Event Processing
and Machine Learning. Although they have different targets and outputs, they
are complementary rather than competing technologies. CEP, through its rich
set of operations, may contribute to data integration and data cleansing, which
is a vital part of ML process. On the other hand, ML produces inferential
models which can be further integrated as user–defined functions in CEP
workflows. The ML paradigm enriches CEP by its different vision: the models
are data–driven and produce insights which may be hard to be detected, even
by experienced human experts.

Keywords: Complex event processing, machine learning, integration pattern

1. Introduction

The data deluge phenomenon is omnipresent, and it became a salient leverage for taking
decision in business, science, government. The main issue one faces is efficiently accessing,
exposing and exploiting the data. Besides this, discovering and exposing the intrinsic
knowledge is another prominent goal. This paper discusses two branches — Complex
Event Processing (CEP) and Machine Learning (ML) – which complementarily act and
share the data stage. The main merit of this paper is showing how these two paradigms can
mutually benefit of each other and a use–case showing their synergistic integration.

The field of Complex Event Processing is composed of the techniques and the tools
used for processing, in near real-time, high volumes of events. The complex events are

1

derived by exploiting the structural and temporal relations between events. The Machine
Learning paradigm provides algorithms and methodologies for pattern detection and model
extraction from data. It is a data–driven approach, mostly relying on non–parametric
models.

Both CEP and ML are data–consumers, but their aims are different and complementary
to each other: the former offers the framework for expression and execution of human–
defined detection statements, while the latter is specialized towards inference, based on
training data.

2. CEP and ML: brief presentations

CEP was originally designed for system architecture prototyping with powerful event
oriented semantics. Although near real-time event processing platforms and solutions
exists for decades [1], CEP has consolidated itself as a separate topic rather recently. The
temporal, causal and structural relations between the raw events are exploited with the
goal of producing added value information represented as complex events. The usual
event–oriented operations [2] implemented by a CEP engine are: filtering, translation,
aggregation, composition, pattern detection. The Event Processing Language (EPL) is a
crux characteristic for the CEP platform, and represents all the operators which can be used
by the developer/domain expert to express the logic which is executed by PNs (such as
the operations presented above). Because the EPL of the CEP engines provides operators
such as windows, aggregation, joining and analysis functions the domain expert can define
EPNs that perform event stream analysis.

Almost all the data oriented applications contain components and mechanisms respon-
sible for data cleansing and preprocessing. A CEP based solution can be recommended
for such operations because it often involves processing of high amounts of events with
strong temporal constraints. In this case the data preprocessing occurs after the events have
entered the processing EPN and the main operations that can be achieved are the following
ones: data filtering, missing data detection or constraints/correlation based validation.

Machine learning targets development of algorithms which are able to improve their
behavior based on the acquired experience. The models resulted in ML are data driven.
There are plenty of proposed ML algorithms: neural networks, support vector machines,
Bayesian networks, decision trees, association rule learning, etc. We also witness an
upsurge interest in ensemble methods, i.e. combining multiple learners. The usual
workflow for a ML–based process is: a) start from raw data; b) perform data cleansing
and data preprocessing; c) apply a ML algorithm to build a model from data. The derived
model is subsequently used to process upcoming data, mainly for making predictions.

2

The data cleansing step is tightly bound to data quality. One has to analyze the data
and to identify the potential errors in the data set. The next step is preparing data for the
Machine Learning algorithms. Some of the ML methods specify the data types they are
able to process (e.g. neural networks accept input numerical values solely, and only a few
of them allow missing values).

There are three approaches to deal with initial data, all of them part of feature engineering.
The easiest one is to chose among the existing attributes and restrict to the ones that are
considered to be relevant for the task at hand. This step may be supported by a domain
expert or automatically performed. The second approach produces new features based
on data attributes: one may compute derived features (e.g. lagged values for time series
forecasting, or ratio of various quantities), hoping that the newly added values are more
relevant for the learning process. The third approach is a recent trend and allows the
machine to extract features on its own, without human intervention. We refer here to
the so-called “deep learning” branch of ML [3], where successive layers of abstractions
are automatically built through learning. The following types of learning mechanisms
are used in ML: supervised, unsupervised and reinforcement learning, with some minor
hybridization and extensions of these mechanisms, e.g. semisupervised and active – the
algorithms makes use of both labeled and unlabeled data – and inductive transfer.

3. Integration Pattern

In Figure 1 we show the integration pattern of ML models in CEP based application. The
CEP engine is used at design time in the data preprocessing step for generating the training
and validation data sets. At run time, in the CEP engine two EPNs are deployed. The
first one is responsible for selecting the sample attributes, which is used by the prediction
model for generating a prediction. The second EPN contains a user–defined function
(UDF) where the prediction model is embedded.

As discussed in the previous section, data preprocessing is a critical step for the success-
fulness of a ML task. CEP shows itself as a good candidate to hold the data processing
workflow in form of EPNs, based on customized CEP statements. One may use some
natively–supported CEP features like computing aggregated values on a window or creat-
ing lagged or differenced variables. Hence, the CEP is expected to critically contribute to
the feature selection/extraction stage.

In the proposed workflow, after the prediction model is generated and validated, it is
serialized in order to be deployed in the CEP engine. Most programming languages and
platforms allow for object serialization. The main merit of binary serialization is the
support for saving any customized version of the learning model. The main drawback is

3

Figure 1. The integration pattern of ML models in CEP applications (CPFF EPN: Cleans-
ing Preprocessing and Feature Filtering EPN; SAS EPN: Sample Attribute Selection EPN;
P EPN: Prediction EPN).

that it is challenging to consume a binary object outside the environment which produced
it. An alternative with increasing popularity is the open standard Predictive Model Markup
Language, an XML–based language which can represent not only predictive and descriptive
models, but also data pre– and post– processing steps.

During runtime, the prediction model is deserialized and it is deployed in the CEP
engine as a UDF. In addition to that, the native features of the CEP are used for joining
data from disparate or asynchronous/unsynchronized data sources, for selecting the sample
attributes used by the prediction models to generate the predicted value.

4. Sample Application

In this section is described an example of how to embed a time series prediction model
into an Esper CEP user defined function. The manipulation of the prediction models was
done using Weka suite [5]. According to the integration pattern presented in section 3,
three steps have to be accomplished in order to embed a prediction model in a PN of a
CEP engine. First, the data scientist and the domain expert select the attributes set, the
prediction model type and train the prediction model. At the end of first step the resulting

4

:: ~Data~ ::
..,...,. ..,. store
Raw
data

Design time
--R----

Run time ..!J,
Raw
data

prediction model is serialized. The process of training and serializing the time series
prediction model is presented in listing 1. The first two lines from the listing creates the
time series prediction object and then, in the third one, the prediction model is trained
using the training Data. At the end, the resulting prediction model is serialized to the file
PATH TO SERIALIZED FILE.

1 W e k a F o r e c a s t e r w e k a F o r e c a s t e r = new W e k a F o r e c a s t e r () ;
w e k a F o r e c a s t e r . s e t B a s e F o r e c a s t e r (new L i n e a r R e g r e s s i o n ()) ;

3 w e k a F o r e c a s t e r . b u i l d F o r e c a s t e r (t r a i n i n g D a t a) ;
S e r i a l i z a t i o n H e l p e r . w r i t e (PATH TO SERIALIZED FILE , w e k a F o r e c a s t e r) ;

Listing 1: Create, train and serialize the time series prediction model.

In the second step, the prediction model is deserialized and is included in an Esper UDF,
which at the end is deployed in the CEP engine. These operations are presented in listing
2. After the time series prediction object is restored from the serialized file (first line), it is
included in the custom made UDF: TimeSeriesPredictionModelUDFClass. A configuration
object (cepEngineConfiguration) is further created for the CEP engine. In the line seven of
the listing 2, the UDF is registered in the CEP engine using the configuration object. The
following parameters have to be included in the configuration object: operatorName: the
name of the custom made operator, which will be used within the queries deployed in the
PN; udfClassName: the name of the class, which represents the UDF; udfMethodName:
the method of the UDF class, which is invoked by the operator. At the end, the Esper CEP
engine is instantiated using the configuration file.

W e k a F o r e c a s t e r w e k a F o r e c a s t e r = (W e k a F o r e c a s t e r) S e r i a l i z a t i o n H e l p e r . r e a d (
PATH TO SERIALIZED FILE) ;

2 T i m e S e r i e s P r e d i c t i o n M o d e l U D F C l a s s . se tMode l (w e k a F o r e c a s t e r) ;
C o n f i g u r a t i o n c e p E n g i n e C o n f i g u r a t i o n = new C o n f i g u r a t i o n () ;

4 c e p E n g i n e C o n f i g u r a t i o n . a d d P l u g I n S i n g l e R o w F u n c t i o n (”
p r e d i c t U s i n g T i m e S e r i e s M o d e l ” , ” T i m e S e r i e s P r e d i c t i o n M o d e l U D F C l a s s ” , ”
p r e d i c t ”) ;

E P S e r v i c e P r o v i d e r e p S e r v i c e = E P S e r v i c e P r o v i d e r M a n a g e r . g e t D e f a u l t P r o v i d e r (
c e p E n g i n e C o n f i g u r a t i o n) ;

Listing 2: Deserialize the Time Series prediction model, load the prediction model in a
UDF and start the Esper CEP engine.

Listing 3 presents a sample query which uses the custom made operator defined pre-
viously (predictUsingTimeSeriesModel). The PN, which executes the query, is triggered
every time when an InputEvent is generated. The custom made operator predictUsingTime-
SeriesModel is invoked with the parameter eventParameter from the InputEvent. At the
end a PredictionEvent is generated which has the value returned by the prediction model
in the predictedValue field.

5

1 i n s e r t i n t o P r e d i c t i o n E v e n t s e l e c t p r e d i c t U s i n g T i m e S e r i e s M o d e l (∗) a s
p r e d i c t e d T e m p e r a t u r e from T i m e S e r i e s P r e d i c t i o n M o d e l S a m p l e

Listing 3: Sample Esper based query which uses the time series prediction model embeded
in a UDF.

5. Conclusions

The integration pattern presented in this paper exhibits CEP and ML complementarity: CEP
supports the data cleansing and feature filtering – needed for model training – and sample
attribute selection – for the inference step. The inference step is supported by ML, from
which the inference model is embedded as an UDF in a CEP workflow. The CEP language
of defining strong temporal relations between events simplifies the process of sample
attribute selection, because at this step the raw events have to be synchronized/(aligned in
order to generate the sample used by the model to make a prediction. Also this step, in the
traditional approach, is accomplished by custom made applications. In addition to these
advantages, the integration of a prediction model in a CEP UDF improves the ability of the
engine to detect pattern which are beyond the availability of the native CEP language. Due
to the recurrence of these scenarios: heterogeneous data to be consumed and exposed to
machine learning plus integrating machine learning outcome in the data workflow, we are
confident that the described integration can be promoted as a pattern: “a widely recognized
and reused solution to a recurring design problem”.

References

[1] N. Leavitt, “Complex-Event Processing Poised for Growth,” Computer, vol. 42, no. 4,
pp. 17–20, Apr. 2009.

[2] O. Etzion and P. Niblett, Event Processing in Action, 1st ed. Greenwich, CT, USA:
Manning Publications Co., 2010.

[3] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009, also published as a book. Now Publishers,
2009.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, “The
WEKA Data Mining Software: An Update,” SIGKDD Explorations, vol. 11, no. 1,
2009.

6

