
Possible manners of Fuzzy Cognitive Maps’ state
reduction

Miklós F. Hatwágner1, László T. Kóczy2

Széchenyi István University, Egyetem sqr. 1., H-9026 Győr, Hungary
1Dept. of Information Technology
E-mail: miklos.hatwagner@sze.hu

2Dept. of Automation
E-mail: koczy@sze.hu

Abstract: Fuzzy Cognitive Maps (FCM) is a powerful tool to analyze and model the
behavior of complex systems. One of the most important elements of FCM is
the connection matrix. This square matrix describes the direction and weight
of the connections between the different parts (called concepts in FCM theory)
of the modeled system. If the number of concepts is only 5-10, the model is
clear and easy to use. However in some cases the whole system cannot be
described with so many concepts to achieve the appropriate accuracy. The
increased number of concepts helps to make the model more accurate but
makes the model complicated as well, therefore confusing and less usable.
Sometimes it is not obvious at first sight for the modelers, which concepts
are really important and which ones are not. The state reduction methods
described in this paper can help to reduce the number of concepts in FCM
models and keep the accuracy at an acceptable level.

Keywords: Fuzzy Cognitive Maps, state reduction

1. Brief introduction to the FCM

Fuzzy Cognitive Maps (FCM) is a very effective but simple and convenient tool to describe,
analyze, model or forecast the behavior of complex systems. FCM is a fuzzy graph
structure, and can be considered as a combination of neural networks and fuzzy logic [6].
The representation of FCM by directed, signed fuzzy graph was introduced by Kosko [5].

The nodes/vertices of the graph are called concepts. The concepts represent the compo-
nents of the examined system. The edges connecting the nodes represent the direction and

1

importance (weight) of the relations between concepts. During a simulation, the concepts
interact with each other, and the dynamics of the modeled system can be observed. If the
initial state of the nodes are known, the states in the later time steps can be calculated by a
simple loop (see Eq. 1). The loop can be iterated until a limit is reached or an equilibrium
state is achieved [3].

Vk+1 = f(N · Vk) (1)

In Eq. 1, Vk is the state of the system in the kth step and N is the connection matrix.
This matrix contains the weights (wij) of the edges between concepts (Ci and Cj). The
main diagonal of the matrix contain only zeros. f is the state transition function (see Eq.
2).

f(x) =
1

1 + e−λx
(2)

λ defines the steepness of the function, and λ > 0. The concept values have to be in the
range [0,1], but the weights are in the [−1,1] double unit interval.

The initial state of the concepts and the connection matrix is generally given by ex-
perts/stakeholders, thus it can contain subjective elements. However the model should be
objective, thus careful filtering and cumulating of the experts’ knowledge is very important
[2].

2. State reduction methods

Certain systems, e.g. an Integrated Waste Management System (IWMS) are rather complex
and six concepts are not enough to model the system with the required accuracy [1]. The
possible solution of this problem is to use more concepts, that is, to increase the complexity
of the model. In the above mentioned case, the number of concepts were increased from
six to thirty-three. Unfortunately, this process makes the model harder to understand and
use in practice. There is a practical demand to make the extended model as simple as
possible, but keep it’s ability to represent the system’s behavior with the required accuracy.

Three state reduction methods will be described in the following. These methods are
quite similar, only some details (e.g. the used metrics) are different. In some sense, they
can be considered as a generalization of the state reduction of finite state machines and
sequential systems. The main idea behind the methods is to create clusters of concepts and
use these clusters as concepts to create a simpler model.

2

At first, there is a one-to-one bind between clusters and concepts: every cluster contain
one of the concepts. With other words, Ki = {Ci} for every i = 1 . . . n where Ki is the
ith cluster, Ci is the ith concept and n is the number of concepts. In the following steps
an agglomerating strategy is used to reduce the number of clusters. In order to apply this
strategy, the “distance” between the current cluster (the elements of the cluster) and the
concepts not included in the current cluster have to be calculated using an appropriate
metrics.

2.1. Metric “A”

The first method uses metric “A”. It measures the absolute differences between 1) Ci and
Ck, and 2) Cj and Ck, where i,j,k = 1 . . . n, i 6= j 6= k. If the differences are less than a
specified ε value (|wik − wjk|/2 < ε and |wki − wkj |/2 < ε), the concept is added to the
current cluster. Fig 1 shows the applied metrics, while Fig 2 gives the exact description of
the cluster building process.

function isNearA(i, j, eps) // i, j = concept indexes
near = true;
for(k=0; k<n and near==true; k++) // n = no. of concepts

if(k!=i and k!=j)
if((abs(w(i, k) - w(j, k))/2.) >= eps or

(abs(w(k, i) - w(k, j))/2.) >= eps)
near = false

return near

Figure 1. Calculation of metric “A”

The state reduction process starts with the execution of buildAllClusters function.
This function requests the creation of clusters using different initial concepts and guarantees
the uniqueness of the clusters. The cluster building itself is the job of the buildCluster
function. This function adds the concept under investigation to the cluster if the return
value of isNearA makes it possible.

The number of concept merges depends on the value of ε. If the value of it is too low,
only a few merge can be made, and the model remains too complex. On the other side,
high ε value result in very simple and inaccurate model. The value must be in the [0,1]
interval, and have to be determined in every different case.

In the case of the above mentioned IWMS, quite high ε were needed to reduce the

3

function buildCluster(initialConcept, eps)
c = {initialConcept}
for(i=0; i<n; i++)

if(i != initialConcept)
member = true
while(member and hasNextElement(c))

j = nextElement(c)
member = isNearA(j, i, eps)
if(member)

c = c + {i}
return c

function buildAllClusters(eps)
clusters = {}
for(i=0; i<n; i++)

k = buildCluster(i, eps)
if(!isElementOf(k, clusters))

clusters = clusters + {k}
return clusters

Figure 2. C-style pseudo-code of the state reduction algorithm, part 1

number of concepts in the desired extent (see Table 1), because a small proportion of the
concepts were often “too different” from the members of the clusters.

2.2. Metric “B”

A second method was developed using metric “B” in order to lower the value of ε (see
isNearB in Fig 3). In this case the current concept is added to the cluster if the difference
between concepts is less than a specified value in a predefined proportion (p) of the cases.
The other parts of the method remained the same.

This method has two important parameters: ε and p. The goal of ε is the same as before.
Small p values help to merge concepts into the same cluster if the “distance” between
the concepts of the cluster and the concept under investigation is greater than ε in an
insignificant number of cases. However high values of p would make possible to merge
everything into the same cluster, therefore high p values should be avoided. Because p
means “probability”, it must be in the [0,1] interval.

4

Table 1. The number of concepts in the reduced connection matrix, using different metrics

Metric “A” Metric “B” Metric “C”
ε No. of concepts ε p No. of concepts ε No. of concepts

0.3 28 0.1 0.2 30 0.011 30
0.4 25 0.2 0.05 30 0.016 28
0.5 18 0.2 0.1 26 0.022 24
0.6 15 0.2 0.2 23 0.027 22
0.7 12 0.3 0.05 23 0.04 20
0.8 4 0.3 0.1 21 0.048 18

0.3 0.2 15 0.054 15
0.4 0.05 19 0.06 12
0.4 0.1 10

function isNearB(i, j, eps, p) // i, j = concept indexes
near = 0
far = 0
for(k=0; k<n; k++) // n = number of concepts

if(k!=i and k!=j)
if((abs(w(i, k) - w(j, k))/2.) < eps)

near = near + 1
else

far = far + 1
if((abs(w(k, i) - w(k, j))/2.) < eps)

near = near + 1
else

far = far + 1
if(near==0 or far/near >= p)

return false
else

return true

Figure 3. Calculation of metric “B”

5

The results given by metric “B” can be observed in Table 1 as well. It can be seen, that
metric “B” made possible to decrease to value of ε, but the authors have investigated a
third metric, too.

2.3. Metric “C”

The third method uses metric “C”. The function isNearC uses normalized, squared
Euclidean distance. This method gave the best results (see Table 1).

function isNearC(i, j, eps) // i, j = concept indexes
sum = 0;
for(k=0; k<n; k++) // n = number of concepts

if(k!=i and k!=j)
dout = w(i, k)-w(j, k)
sum = sum + dout * dout
din = w(k, i)-w(k, j)
sum = sum + din * din

if(sum / ((n-2)*8) < eps)
return true

else
return false

Figure 4. Calculation of metric “C”

2.4. Determining the weight of the merged concepts

Having the concepts reduced, the weights of the new connection matrix has to be calculated.
This is the goal of the getWeight function (see Fig 5). The calculated weight is the
average weight of the connections between two clusters a and b. Self-loops were not taken
into account.

3. Conclusion

The modeling of complex systems using FCM sometimes needs a lot of concepts. These
models are very complex and are hard to use and understand. In these cases the three state
reduction methods investigated in this paper can help to make the model simpler while
retain the required accuracy. The third method that uses metric “C” produced the best

6

function getWeight(a, b)
count = 0
sum = 0
while(hasNextElement(a))

i = nextElement(a)
while(hasNextElement(b))

j = nextElement(b)
if(i != j)

w = w(i, j)
sum = sum + w
count = count + 1

if(count == 0)
return 0

else
return sum/count

Figure 5. C-style pseudo-code of the state reduction algorithm, part 2

results in the course of modeling an Integrated Waste Management System. To define
the parameter values of the methods (p, ε) the help of experts and some experimenting is
necessary.

The suggested fuzzy state reduction methods can be considered as a generalization of
the reduction of finite state machines and it is based on fuzzy tolerance relations [4].

References

[1] Buruzs, A., Hatwágner, M. F., Pozna, R. C. and Kóczy, L. T.: Advanced Learning of
Fuzzy Cognitive Maps of Waste Management by Bacterial Algorithm, in Proceedings
of IFSA World Congress and NAFIPS Annual Meeting, IEEE, pp. 890–895, 2013

[2] Isak, K. G. Q., Wildenberg, M., Adamescu, M., Skov, F., De Blust, G. and Varjopuro,
R.: A Long-Term Biodiversity, Ecosystem and Awareness Research Network Manual
for Applying Fuzzy Cognitive Mapping – Experiences from ALTER-Net, Project no.
GOCE-CT-2003-505298, ALTER-Net Deliverable type: Report, WPR6-2009-02 -
Deliv-erable 4.R6.D2., 2009

7

[3] Ketipi, M. K., Koulouriotis, D. E., Karakasis, E. G., Papakostas, G. A. and Tourassis,
V. D.: A Flexible Nonlinear Approach to Represent Cause–effect Relationships in
FCMs, J. of Applied Soft Computing, vol. 12, issue 12, pp. 3757–3770, 2012

[4] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information, Prentice Hall, 1987

[5] Kosko, B.: Fuzzy Cognitive Maps, Int. J. of Man–Machine Studies, vol. 24, no. 1, pp.
65–75, 1986

[6] Stylos, C. D., Georgopoulos, V. C. and Groumpos, P. P.: The Use of Fuzzy Cognitive
Maps in Modeling Systems, in Proceedings of 5th IEEE Mediterranean Conf. on
Control and Systems, Paphos, Cyprus, 1997

8

