
Proceedings of the 6th Győr Symposium and 3rd Hungarian-Polish
and 1st Hungarian-Romanian Joint Conference on Computational Intelligence

Software-Defined Networks for Secure
Distributed Industrial Communications

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

1“Transilvania” University, Electronics and Computers Department
Bd Eroilor nr 29A, 500036 Brasov, Romania

E-mail: costache.cosmin@unitbv.ro

Abstract: The security of distributed Ethernet-based industrial networks is critical, as
vulnerabilities of these systems could affect national resources, civilians
and the environment. Next-generation firewalls combine application
awareness and deep packet inspection to give companies more control over
applications while also detecting and blocking security threats. While most
industry solutions are physical deployments of industrial switches with
firewall capabilities, we propose a network security implementation of
distributed middleboxes, dynamically deployed as Linux Containers and
centrally managed by a controller, based on Software Defined Networks.

Keywords: SDN, Middleboxes, Linux containers, virtualization

1. Introduction
The Internet today carries lots of packets with little concern about their content. When it
comes to mission-critical industrial applications, some recent famous examples (e.g.
Stuxnet virus designed to attack industrial Programmable Logic Controllers, national
electricity grid vulnerabilities) revealed the importance of the security actions in
Industrial Ethernet networks. As it is difficult to implement security tools on the
industrial end-devices, the solution would be to deploy a service-aware firewall on the
communication link between each end-device and the network, based on distributed
middlebox elements.

Middleboxes (MBs) are a crucial part of many enterprise LANs, data centres, and
clouds, enabling enterprises to ensure security and improve performance [1]. With the
help of middleboxes, the traffic can be further analysed and routing decisions can be
taken based on the content carried by the packages [2]. Industrial middleboxes should
understand the industrial automation protocol being used by the application, so they can
monitor the detailed communication flow and verify it according to the application
logic. So far in the industrial environment there are examples of physical
implementations of security elements (like for example the RADiFlow service-aware
Industrial Ethernet switches or the Cisco Industrial Ethernet 3000 Series Switches).
These Industrial Ethernet management systems have advanced features like network

63

http://en.wikipedia.org/wiki/Programmable_logic_controller

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

Software-Defined Networks for Secure Distributed Industrial Communications

64

elements auto-discovery, topology configuring (IP sub-nets routing, Ethernet rings,
VPN clouds), service groups provisioning and service group security rules planning.

Our proposal is a dynamic software solution that could deploy middleboxes on demand
in the distributed Industrial Ethernet Network, based on SDN – Software Defined
Networks and the Linux Docker containers. SDN has enabled MBs to be deployed at
arbitrary locations in LANs and data centres [3]

The Linux containers represent an emerging technology for fast and lightweight
process virtualization. Because the containers require fewer resources to run by sharing
the operating system kernel, a higher density of containers can be achieved on the same
host, opposed to other virtualization solutions like hardware or para-virtualization.

2. Software-Defined Networking for Industrial Communications
The Software Defined Networking (SDN) is a new architectural concept that aims to
decouple the network control and forwarding functions [4]. This separation enables the
network control layer to be programmable.

A typical SDN architecture consists of 3 layers. The top layer is the application layer
which includes applications delivering services, in the presented case the security rules
that represent the middlebox logic. The applications interact with the SDN controller
which facilitates automated network management. At the bottom is the physical network
layer composed of plain network elements. The network elements are simplified and
they concentrate only on the forwarding functions. All the decisions, route calculations
and policies are implemented in the controller [5]. Furthermore, by the use of Linux
containers at network switch level, other specific security operations (like multi-site
VPN using GRE tunnelling) could be deployed on demand in the network.

Figure 1 The typical SDN Architecture

In an SDN environment the controller is the central point, providing an abstract,
centralized view of the entire network.

In the Industrial Communications [6] implementing SDN for would have a lot of
advantages, some of them illustrated in [7]. Leading SCADA protocols, like Modbus or
IEC 61850, used for automation, could be implemented in a distributed SDN network.

The advantage of implementing security with SDN is the flexibility of the system:
some middleboxes could be deployed at the edge of the network, some security

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

Software-Defined Networks for Secure Distributed Industrial Communications

65

functions need to be centralised, as visible in fig.2 [8]. Security policies could be
adapted on demand or based on application and the migration and the easy nesting of
migrated security appliances throughout the network are enhanced by using Linux
containers.

Figure 2 The typical SDN Architecture
3. Middleboxes
A middlebox (MB) is defined as any intermediary device performing functions other
than the normal, standard functions of an IP router on the datagram path between a
source host and destination host [2].

MBs present several challenges in the implementation. On one hand the specialized
hardware is very expensive and it is difficult to extend it in the means of implementing
new features. Introducing new features often means deploying new hardware. This leads
to other problems like managing the MBs and making them fault-tolerant. With the
current deployment model the MBs cannot be scaled on demand. A solution could be
the use of virtualized MBs but this approach raises several requirements. The virtualized
MBs must run in complete isolation in the case of a multi-tenant environment. Also they
have to deliver high throughput with low delay. In order to scale on demand the
virtualized MBs must be quickly instantiable.

In this paper we present a solution to virtualized MBs based on Linux containers (LXC)
that can be provisioned and configured on demand. The Linux containers offer several
advantages: they are running on common “of the shelf” (COTS) hardware with less
resource requirements and they do not require any specialized hypervisor software. The
LXC technology is included by default in the Linux kernel starting from version 3.4.

4. Implementing Middleboxes using Linux containers
LXC represent a different method of OS-level virtualization. It allows multiple isolated
Linux systems (containers) to be run on a single host operating system. The host kernel
provides process isolation and performs resource management. This means that even
though all the containers are running under the same kernel, each container is a virtual

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

Software-Defined Networks for Secure Distributed Industrial Communications

66

environment that has its own file system, processes, memory, devices, etc. In the
research presented hereby, we used an open source implementation of the LXC
technology called Docker.

Docker is an open-source platform for the management of Linux containers. Docker
containers can be seen as extremely lightweight virtual machines (VMs) that allow code
to be run in isolation from other containers. A Docker container can boot extremely fast
making it the best candidate for on demand provisioning scenarios.

Linux containers are lighter and provide better performance compared to classical
virtual machines. A full virtual machine can take up to several minutes to be
provisioned, whereas a container can be instantiated and started in seconds. Because the
containers do not run on top of a hypervisor, the applications they contain offer superior
performance close to bare-metal performance.

Figure 3 Architecture of the test SDN network

To simulate multiple network nodes hosting virtualized MBs, we have built a test
environment composed of 3 virtual machines running Linux and each VM hosting
multiple containers. Because we had only one physical machine available, we decided
to use VMs to simulate a network topology with 3 nodes. All the VMs run on top of a
Linux OS using the Kernel Virtualization Module (KVM). The host OS is a 64bit
Ubuntu distribution (12.04 LTS). The virtual machines are running a guest OS based on
the Ubuntu 14.04 distribution and each has allocated 1GB of RAM.

Because the Docker containers are lightweight, each VM will host multiple Docker
containers. Additionally, on each VM we have installed a virtual switch module. After
creation, all the containers on a VM will be attached to its local switch. The switches
will be linked using GRE (Generic Routing Encapsulation) tunnels.

For the virtual switch we have chosen the open source software called “open
vSwitch”. To enable the communication between the containers located on different
virtual machines, we have created GRE tunnels between the 3 open vSwitch instances.
The tunnel configuration is depicted in fig. 4.

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

Software-Defined Networks for Secure Distributed Industrial Communications

67

Figure.4 Direct virtual link between two bridges using GRE

Each open vSwitch instance is connected using GRE tunnels with its peers from the
other VMs. The MB functionality is enclosed in a Docker container that can be
provisioned on demand. After the container is started with the help of the SDN
controller, flow entries can be inserted into the virtual switches and traffic routed to the
middlebox.

The content and runtime configuration of a Docker container is stored in a repository
as a template also called “Docker image”. A Docker image can be downloaded from a
public or private repository. For our test scenario we have configured a private Docker
repository and made it available on the network. The repository has been populated with
several Docker preconfigured containers. To facilitate the search and retrieval from the
repository, each container has an associated unique ID.

When the container is started, the Docker daemon will automatically assign MAC and
IP addresses and the container will be attached to the default docker0 bridge. An
example with 2 containers connected to the default bridge is shown in fig. 4.

After the switches are registered with the controller, all the packets received by the
switches, that do not match any entry in the flow table, are sent to the controller which
takes the appropriate decisions. The controller can decide to insert a rule in the flow
table of the switch or to drop the package. Besides the GUI interface, the controller
exposes a set of APIs that can be used to automatically configure the flows between
containers. This will allow the SDN applications to dynamically provision containers
and configure the data flow as response to user requests.

Figure.5 Using the same OpenDaylight SDN Controller for overallaping bridges

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

Software-Defined Networks for Secure Distributed Industrial Communications

68

Using scripts we can now instantiate Docker containers into any of the available VMs
and in the same time using the APIs provided by the SDN controller, to configure the
underlying network to interconnect the containers. This creates the premises of dynamic
provisioning of middleboxes. Industrial application-awareness can be obtained at switch
level, by implementing industrial protocols in containers. The open implementations
libmodbus [9] or libiec61850[10] can be deployed at container level with the benefit of
excluding the OS interoperability problem, that is solved by Docker.

Conclusions

We identified the following typical functions of distributed industrial security
elements, studying the existing legacy implementations [8]:
• Deployment of distributed firewall rules could be performed centralised at

SDN controller level and deployed on demand on the
switches/middleboxes. SDN allows flexibility and application-aware
configurability of the firewall rules, while Linux containers allow the
migration of policies configured at some network level to another location.

• The configuration of ACL (Access List) rules per port, to allow only
devices with specific MAC or IP addresses to be connected to this port

• Detailed service-aware inspection of leading SCADA protocols (ModBus,
IEC 101/104, DNP-3, IEC 61850) is not yet implemented at SDN level, but
could be very efficiently implemented as part of the Linux containers using
open source implementations [9-10]

• Inter-Site VPN, in case a distributed operational network has to use public
transport links to connect between the sites. Our proposal is to use GRE
tunnels, as shown in the previous example – fig. 4

As the industrial implementations are not easy to adapt and deploy in terms of new
security policies, the solution for security in Industrial Ethernet networks would be the
implementation of application-aware security rules at network level. Software Defined
Networks and Linux Containers represent an optimal solution for a flexible,
programmable and fast adaptable secure industrial network with awareness of specific
industrial protocols.

Acknowledgement

This paper is supported by the Sectoral Operational Programme Human
Resources Development (SOP HRD), ID134378 financed from the European
Social Fund and by the Romanian Government.

References
[1] A. Gember, P. Prabhu, Z. Ghadiyali, A. Akella: Toward Software-Defined

Middlebox Networking
[2] B. Carpenter: Middleboxes: Taxonomy and Issues, IBM Zurich Research

Laboratory, http://tools.ietf.org/html/rfc3234

C. Costache1, T. Balan1, F. Sandu1, D. Robu1

Software-Defined Networks for Secure Distributed Industrial Communications

69

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker:
Ethane: taking control of the enterprise, In SIGCOMM, 2007

[4] Nadeau T., Gray K.: SDN – Software Defined Networks, O’Reilly, 2013, ISBN:
978-1-449-34230-2

[5] Jain R., Paul S.: Network virtualization and software defined networking for cloud
computing: a survey, IEEE Communications Magazine, vol.51, no.11, pp.24-31

[6] Zurawski, R., editor – Industrial Communication Technology Handbook, Second
Edition, CRC Press 2014, 1756 pag., ISBN 978-1-4822-0732-3

[7] Abhilash Gopalakrishnan, Applications of Software Defined Networks in Industrial
Automation, http://www.academia.edu/2472112

[8] RAD Data Communications, Secure Distributed Industrial Networks WP, 2011
[9] Open Modus library: http://libmodbus.org/
[10] Open IEC61850 library: http://libiec61850.com/libiec61850/

http://libiec61850.com/libiec61850/

	Introduction
	Software-Defined Networking for Industrial Communications
	Middleboxes
	Implementing Middleboxes using Linux containers

