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Abstract: Adjoint triples have been considered in several frameworks, such as in logic
programming, formal concept analysis and rough set. Multi-adjoint relation
equations are based on these triples and provide a general and flexible setting
which cover a large range of applications. This paper presents these equations
and several results, which are given thank relationship to concept lattice
theory.
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1. Introduction

Fuzzy relation equations, introduced by E. Sanchez [14], are associated with the compo-
sition of fuzzy relations and have been used to investigate theoretical and applicational
aspects of fuzzy set theory [3], e.g. approximate reasoning, time series forecast, deci-
sion making, fuzzy control, as an appropriate tool for handling and modeling of non-
probabilistic forms of uncertainty, etc. Many papers have investigated the capacity to solve
these equations.

Recently, the Galois connection theory has been successfully used to characterize
solvability and find a set of solutions of systems of linear-like equations in semilinear
spaces [12], which can be interpreted as fuzzy relation equations. In [5], the authors
continued with these results and provided a narrow relationship between the solvability of
a fuzzy relation equation and the theory of property-oriented concept lattices. These ideas
and new results have been extended in a multi-adjoint setting in [4].

This paper presents multi-adjoint relation equations and the interconnection with multi-
adjoint concept lattices, specifically, with the property-oriented concept lattices [8].

Several properties of these equations and characterization of both the whole set of
solutions and the minimal solutions have been introduced in other papers [6, 11].

1Corresponding author.
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2. Multi-adjoint property-oriented concept lattices

The basic operators in this environment are the adjoint triples [1], which are formed by
three mappings: a possible non-commutativity conjunctor and two residuated implications,
that satisfy the well-known adjoint property.

Definition 1 Let (P1, ≤1), (P2, ≤2), (P3, ≤3) be posets and &: P1 × P2 → P3,
↙ : P3 × P2 → P1, ↖ : P3 × P1 → P2 be mappings, then (& , ↙ , ↖) is an adjoint
triple with respect to P1,P2,P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3.

Equivalence (1) is called adjoint property. These operators are a straightforward gener-
alization of t-norms and its residuated implication. Since a t-norm is commutative, in this
case both implications coincide. In [10] more general examples of adjoint triples are given.

Example 2 Let [0,1]m be a regular partition of [0,1] into m pieces, for example [0,1]2 =
{0,0.5,1} divides the unit interval into two pieces.

A discretization of a t-norm &: [0,1] × [0,1] → [0,1] is the operator &∗ : [0,1]n ×
[0,1]m → [0,1]k, where n,m,k ∈ N, and which is defined, for each x ∈ [0,1]n and
y ∈ [0,1]m, as:

x&
∗ y =

dk · (x& y)e
k

where d e is the ceiling function.

For this operator, the corresponding residuated implications↙∗ : [0,1]k × [0,1]m →
[0,1]n and↖∗ : [0,1]k × [0,1]n → [0,1]m are defined as:

z ↙∗ y =
bn · (z ← y)c

n
z ↖∗ x =

bm · (z ← x)c
m

where b c is the floor function and← is the residuated implication of the t-norm &.

The triple (&∗ , ↙∗ , ↖∗) is an adjoint triple, although the operator &∗ could be
neither commutative nor associative.
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The basic structure, which allows the existence of several adjoint triples for a given
triplet of lattices, is the multi-adjoint property-oriented frame.

Definition 3 Given two complete lattices (L1, �1) and (L2, �2), a poset (P, ≤) and
adjoint triples with respect to P,L2,L1, (&i ,↙i ,↖i), for all i = 1, . . . ,l, a multi-adjoint
property-oriented frame is the tuple (L1,L2,P,&1 , . . . ,&l).

The definition of context in this framework is analogous to the one given in [9].

Definition 4 Let (L1,L2,P,&1 , . . . ,&l) be a multi-adjoint property-oriented frame. A
context is a tuple (A,B,R,σ), where A and B are non-empty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P and
σ : B → {1, . . . ,l} is a mapping which associates any element in B with some particular
adjoint triple in the frame.

From now on, we will fix a multi-adjoint property-oriented frame and context, (L1,L2,P,&1 , . . . ,&l),
(A,B,R,σ) and, to improve readability, we will write &b,↖b instead of &σ(b),↖σ(b).

In this environment, the following mappings ↑π : LB2 → LA1 and ↓
N

: LA1 → LB2 are
defined, for each a ∈ A, b ∈ B, as

g↑π (a) = sup{R(a,b)&b g(b) | b ∈ B}
f↓

N

(b) = inf{f(a)↖b R(a,b) | a ∈ A}

The pair (↑π ,↓
N

) is an isotone Galois connection [7, 8], that is ↑π and ↓
N

are order-
preserving; and they satisfy that f↓

N↑π �1 f , for all f ∈ LA1 , and that g �2 g
↑π↓N , for all

g ∈ LB2 .

A pair of fuzzy subsets 〈g,f〉, with g ∈ LB ,f ∈ LA, such that g↑π = f and f↓
N

= g,
will be called multi-adjoint property-oriented concept. In that case, g is called the extent
and f the intent of the concept. The set of all these concepts will be denoted byMπN and,
together with the ordering � defined by 〈g1,f1〉 � 〈g2,f2〉 iff g1 �2 g2 (or equivalently
f1 �1 f2), forms a complete lattice [7, 8], (MπN , �), which is called multi-adjoint
property-oriented concept lattice.

A similar theory is developed if σ is defined on A, σ : A→ {1, . . . ,l}.
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3. Multi-adjoint relation equations

The multi-adjoint relation equations, given in [4], arise as a generalization of the usual
fuzzy relation equations [2, 3, 13], following the philosophy of multi-adjoint framework.

In this section, a multi-adjoint property-oriented frame (L1,L2,P,&1 , . . . ,&l) will be
fixed as the algebraic structure in which the definitions and results will be given.

In general, given the universes U , V and W , the fuzzy relations K : W × U → P ,
and D : W × V → L1, an unknown fuzzy relation R : U × V → L2, and a mapping
that relates each element in U to one adjoint triple, σ : U → {1, . . . ,l}, we have that a
multi-adjoint relation equation with sup-&-composition is the equation

K �σ R = D (2)

that is to say,
∨
u∈U (K(w,u)&uR(u,v)) = D(w,v), w ∈ W,v ∈ V , where &u repre-

sents the adjoint conjunctor associated with u by σ, that is, if σ(u) = s, for s ∈ {1, . . . ,l},
then &u is exactly &s.

Note that σ : U → {1, . . . ,l} is an interesting mapping, which plays a similar role as
the one given in a multi-adjoint context. For instance, this map provides a partition of U in
preference sets.

Equation (2) can be rewritten as different systems, one for each v ∈ V , with one
equation for each w ∈W :∨

u∈U
(K(w,u)&uR(u,v)) = D(w,v), w ∈W (3)

Consequently, if we solve System (3), we attain a column of R (i.e. the elements R(u,v),
with u ∈ U ). Therefore, solving one system for each v ∈ V , the unknown relation R is
obtained. Thus, instead of studying the complete Equation (2) we will consider System (3).

The counterpart of the equation above is a multi-adjoint relation equation with inf-↖-
composition, that is

R /τ H = E (4)

that is to say,
∧
v∈V (R(u,v) ↖v H(v,w)) = E(u,w), u ∈ U,w ∈ W , where H : V ×

W → P and E : U ×W → L2 are fuzzy relations, R : U ×V → L1 is an unknown fuzzy
relation.

Therefore, Equation (4) can be written as different systems, one for each u ∈ U :∧
v∈V

(R(u,v)↖v H(v,w)) = E(u,w), w ∈W (5)
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Note that in System (5), the mapping τ is defined on V instead of on U . This is important
in order to relate these equations to a concept lattice framework.

Hence, for each u ∈ U , we obtain a row of R (i.e. the elements R(u,v), with v ∈ V ),
and so, solving one system for each u ∈ U , the unknown relation R is obtained.

Given the environment needed to define System (3) (resp. System (5)) and its associated
multi-adjoint property-oriented context (W,U,K,σ) (resp. (V,W,H,τ)), the concept lattice
associated with this context will be calledMΠN (K) (resp.M∗ΠN (H)).

As a consequence of this relation, the following result holds [4].

Theorem 5 [4] Let v ∈ V and the fuzzy subset fv ∈ LW1 , defined as fv(w) = D(w,v),
for all w ∈W . System (3) can be solved if and only if 〈f↓Nv ,fv〉 is a concept ofMΠN (K).
In this case, g ∈ LU2 is a solution of System (3) if and only if g↑Π = fv and f↓

N

v is the
greatest solution.

Analogously, let u ∈ U and gu ∈ LW2 , defined as gu(w) = E(u,w), for all w ∈ W .
System (5) can be solved if and only if 〈gu,g↑Πu 〉 is a concept ofM∗ΠN (H). In this case,
f ∈ LV1 is a solution of System (5) if and only if f↓

N

= gu and g↑Πu is the least solution.

Note that we are identifying the columns of a matrix R by a fuzzy subset g ∈ LU2 and
the rows of R by a fuzzy subset f ∈ LV1 .

More properties were given in [4] and these equations have been studied in other papers.

One important goal in fuzzy relation equation theory is to find out minimal solutions,
which is more difficult. In [6, 11] new properties and characterizations of the minimal
solutions are presented and so the whole set of solutions can be determined.

4. Conclusions and future work

Multi-adjoint relation equations have been introduced, which generalize several exten-
sions of fuzzy relation equations. In this general environment, different conjunctors and
residuated implications can be used, which provide more flexibility in order to relate the
variables considered in the system and to solve it.

A number of open questions remain for further study, one of them being the complexity
of the procedure in the last papers. It is well-known that implications in MV-algebras
are infinitely distributive. A topic of future study is to characterize all structures where
implication is infinitely distributivity.
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