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Abstract: The relationship between blood pressure and various medical, demographic 
and socioeconomic characteristics, on the example of the longitudinally 
collected data, was examined. The correlation between the repeated 
measurements on the same experimental unit was modelled using random 
effects. Significant predictors of systolic and diastolic blood pressure were 
identified. 

Keywords: blood pressure, repeated measurements, random effects 

1. Introduction 
The purpose of this paper is to study, on the example of the longitudinally collected 
data, the dependence of blood pressure on various factors. The interplay of 
determinants, such as physiological measurements, medical attributes, demographic and 
socioeconomic characteristics on systolic and diastolic blood pressure is investigated.  

Repeated measures data is very frequently used, especially in the clinical trial studies. 
Unfortunately, their analysis is often restricted to standard statistical techniques, like 
simple analysis of endpoints, analysis of covariance, analysis of increments or analysis 
of the area under the curve. This, in this end, leads to loss of information, which could 
be used to explore not only cross-sectional but also longitudinal trends. Very often, 
longitudinal data is the only way to discover the evolution over time and the changes 
pertinent to the analyzed phenomena.  

In this paper, the practical application of methods accounting for the presence of the 
correlation in the longitudinally collected data is presented. For these purposes, 
Generalized Linear Mixed-Effects Model (GLMM) is applied to real-life empirical data. 

2. Rationale and description of the problem 
Hypertension is a chronic health condition prevalent in most developed nations. Its 
prevalence in the western countries exceeds 20%. Untreated high blood pressure is a 
major risk factor for coronary heart disease, cardiovascular disease, stroke or diabetes. 
This risk could be minimized by better knowledge of blood pressure determinants. 
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Modelling blood pressure and identifying its significant predictors support the decision 
making process concerning hypertension diagnosis and its treatment.  

The precision of a single blood pressure measurement could not be adequate or could 
change over time. In such settings, it is better to measure such response multiple times. 
Repeated measurements for each of the experimental units (subjects) are encountered 
very often and are used especially to assess the evolution of a given endpoint over time. 
When data is organized in this manner, the realizations are not longer independent. It 
implies the correlation among the responses on the same subject over time.  

The correlations implied by the presence of repeated measurements on the same 
experimental unit seem to have two aspects and two sources of variability. The first one 
is that measures on the same subject are correlated simply because they share common 
contribution from the subject. The second aspect is that measures on the same subject 
close in time are often more highly correlated than measures far apart in time. The 
common mistake is that the variability within subjects is incorrectly assumed to 
represent the variability among subjects. The repeated measures are not independent 
samples from the population of interest. They are repeated measurements on the same 
experimental unit. The response of a specific experimental unit at measurement can 
provide information about the response of the same experimental unit at re-
measurement. Therefore, the analysis of the repeated measures data should consider the 
presence of correlation between the measurements obtained on the same subject and for 
possible non-constant variability. Of note is here that also variances of repeated 
measures often change in time. These potential patterns of correlation and variation may 
combine to produce a complicated covariance structure of repeated measures. This 
means that for analyzing such data, a special methodology needs to be applied.  

3. Description of NHANES data used for analysis 
The data set used in this paper is obtained from the National Health & Nutrition 
Examination Survey (NHANES). NHANES is an ongoing program designed to assess 
the health status of patients in the United States. The data comes from 2009 and 
involves 5430 patients. 

The data used for the modelling of blood pressure exhibits following features: 

• 3 repeated measurements for both systolic and diastolic blood pressure 
obtained on the same experimental unit (subject); 

• balanced nature of the design, i.e. measurements are taken at fixed time points, 
and there is an equal number of measurements available for all subjects; 

• the response variable of continuous nature. 

The consecutive measurements of systolic and diastolic blood pressure were taken in 
sitting position at an interval of five minutes (after allowing the person to rest for a 
period of five minutes). The kernel density plots for 3 consecutive blood pressure 
measurements are presented below. For kernel density estimation, please refer to [1]. 
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 3 consecutive systolic blood pressure readings 

 
 3 consecutive diastolic blood pressure readings 

 
Figure 1. Kernel Density for 3 consecutive readings of blood pressure 

Predictor measurements are mainly variables representing medical, demographic and 
socioeconomic characteristics. Ratio of Income to Poverty compares a family’s income 
to their appropriate poverty threshold. Below explanatory variables are used for 
modelling systolic and diastolic blood pressure: 

• categorical (classification) variables: age cohort (years), gender (male, female), 
Body Mass Index (BMI) group (kg/m²); 

• continuous variables: uric acid (mg/dL), HDL-cholesterol (mmol/L), gamma 
glutamyl transferase (U/L), family poverty income ratio1, glucose (mmol/L), 
creatinine (umol/L). 

Age at screening is classified into 4 age cohorts: below 20 years, 20-40 years, 40-60 
years and above 60 years, and Body Mass Index (BMI) into 3 BMI groups: below 24 
kg/m², 24-30 kg/m², above 30 kg/m². Note that the associations observed between 

                                                           
1 Ratio of ‘1’ means living right at the poverty line (income at 100% of poverty level), ratio above ‘1’ 
indicates living above the official definition of poverty). 
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continuous explanatory variables do not indicate any specific trends. Only a weak 
correlation exists between explanatory variables. The impact of multicollinearity 
(concurvity) on parameter estimates should not be an issue. 

4. General Linear Mixed-Effects Models (GLMM) 
General Linear Mixed-Effects Models (GLMM) extend the ordinary linear regression 
model by allowing one to incorporate the lack of independence between observations 
and to model more than one error term. They allow one to derive population estimates 
of intercept and slope as fixed effects with individual estimates of intercept and slope 
entered as random effects. The model assumes a continuous outcome variable which is 
linearly related to a set of explanatory variables – both fixed and random. 

General Linear Mixed-Effects Models (GLMM) result from combing a two-stage 
approach, following below steps: 

• stage 1: regression model for each subject separately. A straight line fits the 
observed responses for each subject – studying variability within subjects; 

• stage 2: regression model relating the mean of the individual intercepts (and 
slopes) estimated in stage 1 to subject-specific covariates – studying variability 
between subjects [2]. 

After combining the two stages, General Linear Mixed-Effects Model (GLMM) is 
defined as below [3]: 

  (1) 

or 

 , (2) 

where 

•  is a -dimensional vector of the observed continuous responses for the -

th subject, i.e.  and  (  = number of subjects); 

•  is a  dimensional fixed effects design matrix ( = 
number of fixed effects); 

•  is a -dimensional vector of fixed effects parameters used to model 
; 
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 is  a  dimensional random effects design matrix (• = number of 
random effects) – contains known values for  vari es for r  effects; 

• 

abl andom

 is -dimensional vector of random effects (laten ables) used to model 
the within-subject correlation structure, 

t vari
; 

 is a• -dimensional vect ponents. 

In terms of the analyzed blood pressure NHANES data, the fixed ef ects design 

or of residual com

f
matrix, , is a  dimensional matrix ( ), which represents  
cova rvation of theriates corresponding to the fixed effects for each obse  -th su
The fi ffects design matrix could be defined as: 

bject. 
xed e

  (3) 

where the fixed effects defined y  b  refer to population intercept, time point, age 
cohort, gender, BMI group, uric acid, HDL-cholesterol, gamma glutamyl transfera , 
family pove  income ratio, glucose, creatinine respectively. As among the explanatory 
variables in t  design matrix 

se
rty
he  there is time point, this matrix links both within- and 

between-subject covariates to ffects parameters. The fixed effects vector,  the fixed e , 
consists of  unknown regression coefficients associated with the covariates from   the

design matrix  and is fined as  de . 

For the analyzed NHANES data, it is assumed that ran ntercept is the only 
random effect which might make the variability to vary ov us, the random 

dom i
er time. Th

effects design matrix, , which represents covariates corresponding to the random 
effects for each observation of the -th subject, is just dimensional matrix 
( ): 

  (4) 

The random effects are effects that vary randomly across subjects. Hence, they 
 individual differences for the subjects. In case of the model proposed for include the
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, thNHANES data e random effects vector,  consists ly of one random effect which 
is associated with the covariates from the design matrix 

on
 and is defined by 

. Note that in General Linear Mixed-Effects Models (GLMM) the number of 
ob , for each subject may differ – servations,  is a subject-specific – and 
consequently each subject could have different num of random effects. In the case of 
NHANES data, this is simplified to balanced design. 

It is assumed that the random effects vector, 

ber 

, follows a mult e normal ivariat
distribution,  where  is a  dimensional positive definite 
symmet trix. As m intercept is the only random effect used to 
model the variability, 

ric covariance ma  rando
 matrix is simplified to  form, 

i.e. .  

The residual vector  for data with 3 repeated occasions ( ) is defined by 

, where each element represents the residual associated with each response 
for the -th su  the residuals in standard linear m he residuals bject. Unlike odels, t
associated with repeated observations on the same subject in a linear mixed effects 
model can be assumed that the residu  a multivariate normal  correlated. It is als follow

distribu n, tio  where  is a  dimensional positive 
definite sym matrix ectors of residmetric covariance . The v uals  and random effects 

 are independent on each other [4]: 

  (5) 

General Linear Mixed-Effects Models (GLMM) for systolic/diastolic blood pressure 
boil down to: 

  (6) 
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where  is a vector f systolic/di stolic blood pressure readings for the  o a -th subject 
and all other components are as defined earlier. Note that, the vector of random effects 
is restricted to the single i ercept nt , thus General Linear Mixed-Effects Model 
(GLMM) for blood pressure data could be referred to as Random-Intercept Model. The 
random component  is subject 's predicted eviation from the population intercept 
– this model is therefore subject-specific and is meaningful under hierarchical model 
interpretation. Components 

d

 and  are the random error terms, all the other terms 
give the regression model for the mean response implied by the two-stage model. 

The proposed model with both fixed effects  and with subject-specific effects  
assumes that the vector of repeated measurements follows a linear regression model for 
each subject where some of the regression parameters are population-specific (the same 
for all subjects) whereas other parameters are subject-specific. For the estimation of this 
model, the restricted log likelihood of the data is formed, given the fixed-effects matrix. 
The methods of parameter estimation of General Linear Mixed-Effects Models 
(GLMM) have been widely addressed in the literature, with the most commonly used 
approaches being restricted maximum likelihood (REML) estimation or maximum 
likelihood (ML) estimation [3]. 

Fitting General Linear Mixed-Effects Models (GLMM) requires specification of a 
mean structure (covariates, time effects, interactions), as well as covariance structure 
(random effects, serial correlation). Both components affect each other. Unless robust 
inference is used, an appropriate covariance model is essential to obtain valid inferences 
for the parameters in the mean structure, which is usually of primary interest [5]. Too 
restrictive specifications invalidate inferences when the assumed structure does not hold 
(invalid inferences for the mean structure), whereas overparametrization of the 
covariance structure could lead to inefficient estimation and poor assessment of 
standard errors (inefficient inferences for mean). Note that in this paper, due to limited 
space, only a brief summary of these points with regards to analyzed NHANES data is 
made. The proposed model includes age cohort, gender, BMI group, uric acid, HDL-
cholesterol, gamma glutamyl transferase, family poverty income ratio, glucose, 
creatinine. As checked, this structure could not be reduced to more parsimonious one. 
Exclusion of any of the predictors results in significant reduction of -2 log likelihood, 
what in the end gives sufficient evidence to reject the null hypothesis of the reduced 
model in favor of the most general or saturated structure. It is believed that, apart from 
ra

time effects (neither linear nor 
quadratic). Higher order random effects are also not needed – only random intercept is 
statistically significant. 

Below tables present the estimation results of General Linear Mixed-Effects Models 
(GLMM) for systolic and diastolic blood pressure data. 

ndom intercept, there are no other random effects which could make the variability to 
vary over time. There is no need to include slope for 
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Table 1. Solution for Fixed Effects – systolic and diastolic blood pressure 

 Systolic blood pressure Diastolic blood pressure 
Effect Estimate 

(Std. Error)
t-value 

 (p-value) 
Estimate 

(Std. Error)
t-value  

(p-value) 
Intercept 94,50 (1,48) 63,98 (<0,01) 55,28 (1,09) 50,43 (<0,01) 

BMI (above 30 vs below 24) 3,51 (0,59) 5,90 (<0,01) 2,98 (0,44) 6,75 (<0,01) 
BMI (24-30 vs below 24) 2,54 (0,53) 4,74 (<0,01) 1,14 (0,39) 2,89 (<0,01) 
Gender (male vs female) 3,44 (0,48) 7,19 (<0,01) 2,93 (0,35) 8,25 (<0,01) 

Age (above 60 vs below 20) 20,82 (0,71) 29,53 (<0,01) 6,32 (0,52) 12,08 (<0,01) 
Age (40-60 vs below 20) 10,60 (0,68) 15,71 (<0,01) 13,25 (0,50) 26,48 (<0,01) 
Age (20-40 vs below 20) 4,22 (0,64) 6,59 (<0,01) 8,51 (0,48) 17,91 (<0,01) 

Uric acid 0,75 (0,18) 4,27 (<0,01) 0,18 (0,13) 1,37 (0,17) 
HDL-cholesterol 2,11 (0,55) 3,86 (<0,01) 0,52 (0,41) 1,28 (0,20) 
Gamma glutamyl 

transferase 
0,03 (0,01) 4,78 (<0,01) 0,02 (0,00) 4,63 (<0,01) 

Family poverty income ratio -0,71 (0,13) -5,53 (<0,01) 0,01 (0,09) 0,07 (0,94) 
Glucose 0,68 (0,12) 5,72 (<0,01) -0,07 (0,09) -0,84 (0,39) 

Creatinine 0,02 (0,01) 2,97 (<0,01) -0,01 (0,00) -1,54 (0,12) 
Time point (first vs third 

measurement) 
2,30 (0,08) 28,74 (<0,01) 1,24 (0,08) 15,95 (<0,01) 

Time point (second vs third 
measurement) 

0,92 (0,08) 11,45 (<0,01) 0,29 (0,08) 3,74 (<0,01) 

Note: Estimation methods: Restricted Maximum Likelihood (REML), Covariance 
parameters: 3, Columns in X: 19, Columns in Z per subject: 1, Number of subjects: 
5430, Max obs. per subject: 3. 

Table 2. Covariance Parameter Estimates – systolic and diastolic blood pressure 

 Systolic blood pressure Diastolic blood pressure 
Covariance Parameter Estimate Estimate 

Intercept 215,40 116,25 
Time point (factor) 16,4476 15,4450 

Residual 0,9998 0,9995 

The estimated model could be perceived in both conditional and unconditional sense. If 
the interest is in quantities averaged over all possible values of the random effects, then 
the focus is on the marginal formulation. Although in practice one is usually interested in 
estimating the parameters in marginal linear mixed-effects model, it is often useful to 
calculate estimates for the random effects . Under the hierarchical model interpretation, 
estimation of the random effects  is helpful for detecting outlying profiles [6]. This 
approach is particularly useful in clinical trials where interest is in drug efficacy for a 
particular patient (conditional formulation). It needs to be pointed out that for the analyzed 
blood pressure data, huge between subject variability in comparison to the within subject 
variability is observed. In such settings, hierarchical model interpretation, i.e. subject-
specific interpretation rather than marginal one, is more reasonable. 
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The estimate of subject-specific blood pressure could be seen as a weighted average 
of the estimated overall effect averaged over all subjects combined and the observed 
effect of a particular subject. The weight is determined by the relative sizes of the 
between-subject and within-subject variances. In case of the NHANES data, the 
estimated overall average effect size is not a good summary measure for all the subjects 
combined. The between-subject variance is relatively large as compared to the within-
subject variances meaning that there are large deviations from the population mean. 

In order to identify outlying profiles or group of individuals evolving differently in 
time, which deserve better attention by the researcher, one needs to focus on the 
deviations from the overall mean - how much the subject-specific profiles deviate from 
the overall average profile. Random effects, , reflect how the evolution for the th 
subject deviates from the expected evolution . These estimates could be 
interpreted as marginal residuals, i.e. . For the identification of outlying 
observations marginal studentized residuals were used. 

  

Figure 2. Box Plot of Studentized Marginal Residuals – on the example of systolic blood 
pressure 

Systolic blood pressure  
Quantile Estimate 

99% 3,1268
95% 1,7181
90% 1,1985

75% Q3 0,5162
50% Median -0,0684

25% Q1 -0,6269
10% -1,1256
5% -1,4631
1% -2,1964 

 

Figure 3. Q-Q Plot for Studentized Marginal Residuals - on the example of systolic 
blood pressure 
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5. Discussion – interpretation of the results 
The relationship between blood pressure and analyzed explanatory variables is different 
for systolic and diastolic blood pressure. Model for systolic blood pressure indicates that 
all the explanatory variables influence the response. They are statistically significant at 
the assumed significance level of 0,01. This relationship is not so clear in case of 
diastolic blood pressure where only one continuous predictor - gamma glutamyl 
transferase - significantly impacts blood pressure. 

The estimates are consistent with previous studies concerning systolic blood pressure 
involving the application of nonlinear splines in the response-predictor relationship over 
the averaged responses obtained using Generalized Additive Models [7]. It is expected 
however, that the analysis accounting for the presence of correlation and avoiding the 
averaging of the responses, which leads to loss of information, is more powerful to 
detect differences and relationships present in the data.  

The risk of high systolic blood pressure is higher among older patients. On average, 
the systolic blood pressure for subjects of age above 60 is more than 20 mmHg higher 
than for subjects of age below 20 years. Overweight subjects (those with BMI 24-30 
kg/m²) and obese (those with BMI above 30 kg/m²) have significantly higher blood 
pressure than subjects with BMI below 24 kg/m². On average, systolic blood pressure 
for men (as compared to females) is greater by 3.5 mmHg and diastolic blood pressure 
greater by 3. 

People with elevated uric acid level are at greater risk of high systolic blood pressure. 
It is also supported by other studies on uric acid [8]. Effective drugs already exist which 
lower the level of uric acid and, by these means, are intended to lower blood pressure 
level. HDL-cholesterol increases systolic blood pressure by about 2 mmHg for every 1 
unit increase (mmol/L). This link is not significant for diastolic blood pressure readings. 
Gamma glutamyl transferase, a marker of oxidative stress, is positively related to both 
systolic and diastolic blood pressure. More susceptible to high systolic blood pressure 
are also subjects in low socioeconomic status i.e. with lower income as assessed by 
family poverty income ratio. These findings seem to be pretty worrying, as most 
researches on hypertension are focused on developed urban countries. Very little is 
known about hypertension treatment and its diagnosis outside high-income areas. In 
low-income regions, high blood pressure is the major risk factor for cardiovascular 
diseases. Higher blood pressure is associated with higher serum creatinine level (an 
indicator of chronic renal disease) and an increase in glucose level. Elevated glucose 
increases the chance of having diabetes and this probably leads to higher systolic blood 
pressure.  

For subjects with high random effects values (in magnitude), the probability of having 
high systolic/diastolic blood pressure is much more due to the patient’s uncharacterized 
"frailty" than to fixed effects. Large number of outlying values and large variability 
among random effects indicate that there is wide between-individual heterogeneity. This 
additionally speaks for the application of random effects approach and allowing them to 
represent natural heterogeneity between subjects. 
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6. Concluding remarks 
In this paper, the practical use of General Linear Mixed-Effects Model (GLMM) for 
analysis of the longitudinal data was demonstrated. Modelling correlation among 
measurements made on the same experimental unit was performed using random 
effects. The real-life empirical example showed the robustness and flexibility of General 
Linear Mixed-Effects Models (GLMM) for the analysis of repeated measurements data 
with continuous response variable. Used methodology is much more appropriate as 
compared to traditional methods like separate ANOVA at each time point, or 
multivariate approach employing unstructured-covariance matrix. The use of General 
Linear Mixed-Effects Models (GLMM) in clinical trials should be encouraged, given 
their capability to model the within-cluster correlation. 
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