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Abstract: The paper presents a distribution-free procedure for calculating the value of a 
conditional quantile estimator. Thanks to a clear, near intuitive interpretation, 
the practical implementation of this method is very simple and it can easily 
be modified or generalized depending on the individual needs of atypical 
applications. In particular, conditioning variables can be taken into account – 
not only continuous (real), but also binary, discrete and categorized, or any 
of their combinations. 
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1. Introduction 

Consider the one-dimensional random variable Y , termed below as a describing 
variable. Let also be given the Wn -dimensional random variable W , called hereinafter a 

conditioning variable. Their composition 







=

W

Y
Z  is a random variable of the 

dimension 1+Wn . Assume that distributions of the variables Z  and, in consequence, 

W  have densities, denoted below as ),0[: 1 ∞→+Wn
Zf R  and ),0[: ∞→Wn

Wf R , 
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respectively. Let also be given the so-called conditioning value, that is the fixed value of 

a conditioning random variable Wnw R∈* , such that  

 0)( * >wfW   . (1) 

Then the function ),0[:*|
∞→= R

wWY
f  given by  
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     for every  R∈y  (2) 

constitutes a conditional density of probability distribution of the random variable Y  
for the conditioning value *w . A quantile of the order )1,0(∈r  with the condition 

Wnw R∈*  is every number R∈*|wr
q , such that  

 ryyf
wr

q

wWY
=∫

∞−
= d)(

*|

*|
  . (3) 

If the support of the function *| wWY
f =  is connected, then the quantile is unique. The 

conditional quantile *|wr
q  constitutes therefore the refinement of the “classic” quantile 

by using the information that the conditioning random variable, in a specific situation, 
has taken the value *w .  

This paper presents a procedure for calculating the estimator of a conditional quantile, 
based on the statistical kernel estimator methodology. Its nonparametric nature implies 
the worked out procedure is independent of types of random variable distributions. The 
key advantage is, however, its simplicity and ease of interpretation and possibilities of 
creating individual modifications suitable in practice for specific particular applications, 
especially the potential generalization of conditioning variables, not only the continuous 
(real) but also – as should be clearly underlined – binary, discrete and categorical 
(ordered and unordered), as well as their compositions.  

Classic methods for the conditional quantile estimation, together with reach subject 
literature can be found in the monograph [7]. A survey of procedures for the basic 
unconditional case is contained in the articles [3-4]. As an example of the non statistical 
approach, see e.g. the paper [15].  

2. An algorithm for conditional quantile estimation  

Let the n-dimensional random variable X  be given, with a distribution characterized by 

the density f . Its kernel estimator ),0[:ˆ ∞→nf R , calculated using experimentally 

obtained values for the m-element random sample  

 1x , mxx  , ... ,2   , (4) 

in its basic form is defined as  
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)(ˆ   , (5) 

where }0{\N∈m , the coefficient 0>h  is called a smoothing parameter, while the 

measurable function ),0[: ∞→nK R  of unit integral 1d)(
 

=∫ n xxK
R

, symmetrical 

with respect to zero and having a weak global maximum in this place, takes the name of 
a kernel. The choice of form of the kernel K  and the calculation of the smoothing 
parameter h  is made most often with the criterion of the mean integrated square error.  

Thus, the choice of the kernel form has – from a statistical point of view – no 
practical meaning and thanks to this, it becomes possible to take into account primarily 
properties of the estimator obtained, or calculational aspects, both advantageous from 
the point of view of the applicational problem under investigation. In practice, for the 
one-dimensional case, the function K  is assumed most often to be the density of a 
common probability distribution. In the multidimensional case, two natural generalizations 
of the above concept are used: radial and product kernels. However, the former is 
somewhat more effective, although from an applicational point of view, the difference is 
immaterial and the product kernel – significantly more convenient in analysis – is often 
favored in practical problems. The n-dimensional product kernel K can be expressed as  

 )(...)()()( 2211
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  , (6) 

where iK  for ni , ... ,2,1=  denotes the previously-mentioned one-dimensional kernels, 

while the expression nh  appearing in the basic formula (5) should be replaced by 

nhhh ⋅⋅⋅  ... 21 , the product of the smoothing parameters for particular coordinates.  

The fixing of the smoothing parameter h  has significant meaning for quality of 
estimation. Fortunately – from the applicational point of view – many suitable 
procedures for calculating the value of the parameter h  on the basis of random sample 
(4) have been worked out.  

For broader discussion of the above tasks see [8, 12-13].  

The kernel estimators technique will now be used below for the task of conditional 
quantile estimation. Let a one-dimensional describing random variable Y  as well as the 

Wn -dimensional conditioning random variable W  be given. Suppose also the random 

sample  
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
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obtained from the variable 







=

W

Y
Z . The particular elements of this sample are 

interpreted as the values iy  taken in measurements from the random variable Y , when 

the conditioning variable W  assumes the respective values iw . Using the methodology 

presented above, on the basis of sample (7) one can calculate Zf̂ , i.e. the kernel 

estimator of density of the random variable Z  probability distribution, while the sample  

 1w , mww  , ... ,2  (8) 

gives Wf̂  – the kernel density estimator for the conditioning variable W . The kernel 

estimator of conditional density of the random variable Y  probability distribution for 
the conditioning value *w , is defined then – as a natural consequence of formula (2) – 

as the function ),0[:ˆ
*|

∞→=
Yn

wWY
f R  given by  
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==
  . (9) 

If for the estimator Wf̂  one uses a kernel with positive values, then the inequality 

0)(ˆ * >wfW  implied by condition (1) is fulfilled for any Wnw R∈* . In the case when for 

the estimators Zf̂  and Wf̂  the product kernel (6) is used, applying in pairs the same 

positive kernels to the estimatorWf̂  and to the last Wn  coordinates of the estimator Zf̂ , 

then the formula (9) can then be given in the form particularly helpful for practical 
applications:  
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while 0h , 
Wn

hh , ... ,1  represent smoothing parameters mapped to particular coordinates 

of the random variable Z  (the first 0h  connotes with the describing variable Y , and 

the rest 
Wn

hh , ... ,1  with subsequent coordinates of the conditioning variable W ), the  

so-called conditioning parameters id  for mi  , ... ,2 ,1=  are defined by the following 

formula:  
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where the particular coordinates of the vectors *w  and iw  have been denoted in a 

natural manner  
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If one uses the kernels 1K , 
WnKK  , ... ,2  with positive values, conditioning parameters 

(11) are also positive. The value of the parameter id  characterizes the “distance” of the 

given conditioning value *w  from iw  – that of the conditioning variable for which the  

i-th element of the random sample was obtained. Then estimator (10) can be interpreted 
as the linear combination of kernels mapped to particular elements of a random sample 
obtained for the variable Y , when the coefficients of this combination characterize how 
representative these elements are for the given value *w .  

With respect to the definition of a conditional quantile (3), its natural estimator is the 
solution of the following equation with the argument *|

ˆ
wr

q :  

 ryyf
wr

q

wWY
=∫

∞−
= d)(ˆ

*|

*

ˆ

|
  . (13) 

For estimation of the conditional density *|
ˆ

wWY
f =  appearing above, the kernel estimator 

given in the form (10) will be used. Moreover, a continuous function of positive values 
should be chosen as the kernel 0K , also so that the function RR →:I  such that 

∫ ∞−
=

w
uuw d)()( 0KI  can be expressed by a relatively simple analytical formula. 

Equation (13) is equivalently described then in the following form:  
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If the left side of the above equation is denoted by L , i.e.  
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then 0)ˆ(lim *

*
|ˆ

<
−∞→ wry

qL
w

, 0)ˆ(lim *

*
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>
∞→ wry

qL
w

, the function L  is strictly increasing and its 

derivative is simply expressed by  

 ∑
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In this situation, the solution of equation (14) can be effectively calculated on the basis 

of Newton’s algorithm [6] as the limit of the sequence ∞
=0,|

}ˆ{ * jjwr
q  defined by  
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with the functions L  and L′  being given by dependencies (15)-(16), whereas a stop 
criterion takes on the form  

 Yjwrjwr
σqq ˆ 01.0 |ˆˆ|

1,|,| ** ≤− −   , (19) 

while Yσ̂  denotes the estimator of the standard deviation of the random variable Y .  

3. Final remarks  

The correct functioning and positive properties of the algorithm presented in this paper 
were confirmed with detailed numerical verification. It is worth noting that in any case 
as the sample size increased, the obtained parameter value converged to the theoretical, 
and the standard deviation to zero. The above asymptotical features are of fundamental 
significance from an applicational point of view, as they prove that it is possible to 
obtain any precision wished, although this requires the assurance of a sufficient random 
sample size. In practice, therefore, the necessity of the right compromise between these 
quantities is called for.  

The procedure presented in this paper has been given in its basic form, easier to 
implement and calculationally more convenient. A clearer interpretation means it is 
possible to make individual modifications and generalizations, which may be useful in 
particular atypical tasks. In particular, one can introduce the different types of particular 
coordinates of the conditioning random variable W . Namely, the kernel estimator's 
definition (5) was presented in Section 2 for the most often used in practice continuous 
(real) random variables, but the same can be also made for binary, discrete and 
categorical (ordered, too) variables as well as their compositions. The literature 
concerning this subject is quite broad and varied. For the first case, it is worth quoting 
the monographs [8 – Section 3.1.8; 12 – Section 6.1.4] as well as the classic paper [2], 
and for the second [1, 14]. Issues connected with categorical variables can be found in 
the publications [5, 10-11]. After introducing a binary, discrete and/or categorized 
variable to the algorithm worked out here, it undergoes practically no changes, apart 
from technical ones resulting from calculational differences: the conditioning 
parameters id  consists then only from factors of different types, not only continuous 

like in formula (11). This property particularly should be underlined considering the 
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modern data analysis tasks, which more and more often take advantage of the many 
different configurations for particular types of attributes.  

A detailed description of the methodology presented here and verified experimentations 
will be found in the paper [9] currently undergoing publication. The algorithm is given 
there in the ready-to-use form, together with all formulas, concrete analytical forms of 
functions used and rules defining parameter values. It can be applied directly without 
detailed subject knowledge and laborious research.  
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