
Proceedings of the 6th Győr Symposium and 3rd Hungarian-Polish
and 1st Hungarian-Romanian Joint Conference on Computational Intelligence

Packet Processing for Streaming
Filtering on ATCA Platforms

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

1Transilvania” University, Electronics and Computers Department
BdEroilor nr 29A, 500036 Brasov, Romania

E-mail: robu.dan@unitbv.ro

Abstract: The paper presents the hardware and software integration of packet
processing on an Advanced Telecom and Computing Architecture. The
Continuous Computing PP50 sub-system is introduced, with its multi-
processor architecture, various firmware and management solutions. With
the purpose of flow discrimination by deep packet inspection, it is
presented the development environment, software configuration and
application management in a use-case for DSTP filtering.

Keywords: ATCA, packet processing, DPI, RMI-OS, Linux

1. Introduction
ATCA (Advanced Telecom and Computing Architecture [1]) represents a high-tech
modern platform with a standard shelf and a back-plane (“mother-board”) compliant
with the regulations of PIGMG (PCI Industrial Computers Manufactures Group) [2].
The mother-board has a Switching Fabric behind (an “InfiniBand” in our platform), to
be used together (with an intimate common “mesh” of direct links), by computing,
telecom or instrumentation modules (“blades”) taking benefit of the very large
bandwidth (40G in our case) for local transfers [3], [4].

In the present paper, we present the structure and the integration of ATCA platform
with great scalability and versatility for telecommunications. The focus is on the
advanced Packet Processing capabilities, with details on the specific build environment,
configuration, development flow and practical issues of DPI (Deep Packet Inspection)
research.

Deep packet inspection in real time will play a vital role for the mobile operators and
add value to the transmission medium. This will enable the services providers to offer
more mobile applications that, in turn, will use this transmission medium. In addition,
the traffic is expected to grow even more due to Machine to Machine (M2M)
communication in the new Internet of Things (IoT), bringing Quality of Service (QoS)
and Data Analytics (DA) on the front page.

53

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

54

2. ATCA Platform Integration

2.1. The workbench laboratory platform

The apparatus of our research is centered on the actual ATCA rack of our laboratory
[5], manufactured by Radisys/Continuous Computing. It is of the type SH61 40G,
having 6 front module slots (and 6 in the back, accessible via a RTM - Rear Transition
Modules). There are 3 redundant power supplies.

The available blades (that can be reconfigured and rescaled at anytime, to meet
various application requirements) are (see Figure 1): the FlexCore ATCA-FM40 –
Ethernet switching boards, ATCA-XE80 computing boards, ATCA-PP50 – packet
processing boards and ATCA-9100- TI Digital Signal Processing boards.

Figure 2. ATCA Platform Integration at “Transilvania” University – front and rear

views with details: 1-ATCA system; 2-switch with management (“remote patch panel”);
3-Linksys router (LAN); 4-TP-LINK router (Mi-Fi – WAN, Wi-Fi, 3G) with antenna (5)

& Huawei E220 UMTS modem (6); 7-WebCam; 8-Power contactor;
9-TeamViewer screen with WebCam snapshot; 10-Windows console;

11-port replicator; 12-Linux console

The platform was extended for remote access [5] – Fig.2. We have added full remote
power-on/off capabilities via IP-controlled electronic relays engaging electromagnetic
relays that drive big contactors.

A MS Windows “console” is accessible from the Internet via a TeamViewer tool
(remote desktop display is also visually completed by a WebCam). This console (an
extension to the Service Management Point presented in the next paragraph) has the
ATCA in its Intranet (via a Linksys WRT54GL router).

Direct administrative access to the platform blades is available via serial ports of the
console. Indirect administrative access is possible via Eth LAN, using the “Pigeon
Point” IP Manager installed on the SH61 chassis.

The other console – a Linux machine – can be considered an extension of the Service
Creation Environment presented in the next paragraph.

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

55

It runs the RMI/NetLogic/BroadCom SDK that supports the development for the
PP50 blade (the focus of the present paper).

Recently, an external 2.5 OSI level switch (with management was added, as “remote
patch-panel”) as well as a serial port replicator (for complete blade control via
Hyperterminal) and a Mi-Fi multi-modal backup access (WAN, Wi-Fi, 3G) via a TP-
LINK TL-MR3220 router.

2.2. ATCA integration in an Intelligent Network architecture

In the Intelligent Networks (IN) customers themselves (institutions or individuals) –and
not only manufacturers, owners and / or operators of the systems – are those who are
enabled to design, develop, install, manage, operate and close the services.

Originally, communications IN were extensions of traditional telephone networks
PSTN (Public Switched Telephone Networks) which became SSP (Service Switching
Point) by adding a service-code detector – which triggers the “serving routine” by
invoking the SCP (Service Control Point) – that runs the FSL (FlexibleServiceLogic).
The main architectural levels of communications IN (Fig.3) are:

• Service Switching Point (SSP) where there are resident the switching functions SSF
(Service Switching Functionality), CCF (Call Control Functionality) etc.

SSP implements the BCSM (BasicCallStateModel), an algorithmic state machine
(finite state machine) which implements all the transitions and states related to the call
processing, from the resource allocation request (dependent not only on the destination,
but also on the origin and time of request), hold and release of resources. BCSM events
are considered “DetectionPoints”– DP (detection of asynchronous service requests).

• Service Control Point (SCP) that implements the SCF (Service Control
Functionality) and the SDF (Service Data Functionality). It is a powerful platform or
server (now even a Cloud manager), treating DP requests from SSP by running the
Points in Call (PC) – the above-mentioned ((DP-“interrupt”) serving routines).
Additional data requiredin the processing of SSD (Service Support Data) canbe
obtained from SDF.

• Service Creation Environment (SCE) – for the development (or adaptation –
“customization”) of services (usually via web clients, increasingly Thin Clients - tablets
or smartphones). Although they can be used even general purpose programming
languages (such as C or Java), SCE benefits from dedicated languages (e.g. JAIN-SLEE
extensions).

• Service Management Point (SMP) which is an intermediate level for service
administration and storage – for example, as XML files, particularly XPDL (XML for
Process Description Language) obtained, for instance, with BPEL (Business
Programming & Execution Language).

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

56

Figure 3. ATCA platform configured as IN architecture

Deep Packet Inspection (DPI) applications are expected to hit $1.5 B in 2014, and the
forecast calls for growth [6]. DPI becomes critical for telecom operators in order to add
value to the transmission medium used by over the top players (OTT) via services and
applications from new mobile hand-held devices. Due to reduced revenues the mobile
operators are interested in monetizing the transmission channel that is heavily used by
OTT services providers (Over the Top players).

Our proposed industrial integration for the ATCA platform is suitable for monitoring
and legal interception applications, for infotainment and packet processing of M2M
communication.

2.3. The Packet Processing Sub-System

Our ATCA 40G platform has two PP50 blades, each with two packet processors RMI-
Netlogic-Broadcom – type XLR732 – that have a „super-scalar” architecture. Each
processor is multi-core MIPS64, each core being capable of running 4 threads (resulting
a total of 32 virtual cores/processor).

Streaming „data flows” can be analyzed without being ”unpacked” – a packet
processor [7] can inspect in real time millions of simultaneous streaming threads, in
security appliances. The packet processing enables application identification, flow
discrimination and traffic control [8], [9].

In order to detect the “digital fingerprint” characteristic to particular flow classes, the
computations take place in multiple “virtual machines” running the generic functions of
fragmentation, directing, encapsulation, encryption (and so on) of the Packet Processing
Language (PPL).

A non-blocking 10GbE switch (the “Core Switch” FM2112) interconnects the packet
processors, the I/O and the backplane. Each XLR732 processor has two 10GbE ports to
this switch, enabling a 10GbE duplex capacity. External I/O is both via redundant ports
(1GbE standard PICMG 3.1.3 and 10GbE standard PICMG 3.1.9) to the black-plane
(RTM and Fabric Interface) and with the front panel (via direct 1GbE and 10GbE
ports).

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

57

3. Development of Packet Processing Solution
Our end purpose is to identify a M2M stream inside a general data capture. The capture
would contain M2M traffic (e.g. DSTP) alongside normal HTTP or TCP protocols. We
captured the stream in a file and analyse it or feed the stream directly to a packed
processing application running on the XLR processors. For these purposes, but not only,
we have devised a test environment in order to customize and debug the application
[10]. The application is running on top of the RMIOS operating system loaded on one of
the XLR cores (via userapp command).

Our developed application, PacketClassifier, has two main functions

1. config_parser – used to build the masks to verify the IP headers of the packets.

2. process_pkts – reads each IP header as it arrives and if it matches the classification
is attempted. The program will take on an infinite loop (for) and read input messages
from the messaging ring.

This sequence in Pseudocode would be:
while (1) {
 Issue MSGWAIT instruction with mask of Buckets to wait on
 // Thread goes to sleep, is awakened when a msg. is received
 Get the message
 Extract physical address from Packet Descriptor
 Convert physical address to virtual address
 Process the Rx packet // extract source and destination IP
if (Tx packet ready to transmit) {
 Initialize Packet Descriptor for the packet
 Send the Tx message
 }
}

As we are interested to process real data in our traffic analysis, DSTP traffic
(DataSocket Transfer Protocol) represents a good candidate for M2M traffic. In order to
capture the DSTP traffic there are two options:

Option 1 – Generate a dump pcap file that contains a DSTP stream. For this purpose
we have used LabWindows CVI and we have identified two ways in providing data
streams that can be later used by the application. A solution is to use a DSTP stream
generator and dump the information into a file. For example, we have used already
available deliveries from Labview CVI in the following way, see also Fig. 4

1. Initiate DSTP server (DataSocket Writer)

 1.a. Write data in file

 1.b. Write data in stream via localhost (127.0.0.1:3015)

2. Read DSTP data from stream

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

58

Fig. 4. LabWindows DSTP capture – Server/Writer as Stream/File and Read

Option 2 – Provide direct stream via a packet capture utility called pretender. provided
with the RMIOS SDK for traffic supply to the gmac interfaces.
Usage: ./pretender [-p port] -f <tcpdump-style filter string>
atca@ubuntu $ cd /opt/rmi/fsim_2.0.0/install/
atca@ubuntu $ sudo ./pretender -p 6001 -i eth0 -d -f "ether dst

00:1c:25:a2:03:5f"

Above command will redirect all packets to gmac0, port 6001, from eth0, if they are
addressed (destination) the specified MAC address. Using this command we can supply
real time traffic to the packet processing application.

A valid way to send the stream from the dumpfile towards the application is to use the
pretender as interceptor for data but generate the stream using an utility like dumpcap,
tcprreplay or bittwist (some of them might require installation e.g. sudo apt-get install
tcpreplay). We have successfully used bittwist to send the pcap file to pretender. The
only constraint we have met is that we need to re-format the pcap file using tcprewrite
like below:
atca@ubuntu $ tcprewrite -i dumpfile.pcap -o test1.pcap --

dlt=enet --enet-smac=00:0C:29:42:F8:2A –enet
dmac=00:0C:29:42:F8:2B

Note: with this command we are adding test MAC addresses through conversion.

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

59

4. Packet Discrimination in Data Flow
Based on the criteria selected in the masks, TCP and UDP traffic can be separated with
all the relevance that comes from that. Also, HTTP or, in our case DSTP for M2M
services can be further studied.

Below is an example for simple IP filtering (the application execution is shown in
Fig.5):
// extract the destination IP

dest_ip = (recv_pkt->data[30]<<24)|(recv_pkt->data[31]<<16)|(recv_pkt-
>data[32]<<8)|(recv_pkt->data[33]);

printk("Destination IP: %d.%d.%d.%d \n",

 (int) ((dest_ip>> 24) & 0xff), (int) ((dest_ip>> 16) & 0xff),

 (int) ((dest_ip>> 8) & 0xff), (int) ((dest_ip>> 0) & 0xff));

// extract the source IP

src_ip = (recv_pkt->data[26]<<24)|(recv_pkt->data[27]<<16)|(recv_pkt-
>data[28]<<8)|(recv_pkt->data[29]);

printk("Source IP: %d.%d.%d.%d \n",

 (int) ((src_ip>> 24) & 0xff), (int) ((src_ip>> 16) & 0xff),

 (int) ((src_ip>> 8) & 0xff), (int) ((src_ip>> 0) & 0xff));

Fig. 5. Application execution on ATCA platform via remote access (Tftpd32)

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

60

5. Conclusions
As packet processing and flow discrimination is becoming a required capability for any
telecom operator, ATCA integrations are to become more common. Our study and
practical integration and development demonstrated the possibility of traffic
discrimination, in an industrial scenario, involving DSTP. The presented technique can
be successfully applied also to statistics, control, filtering, resource allocation or legal
survey.

ATCA integration was modelled on IN, with emphasis on remote access. Our purpose
is to implement a service factory with special capabilities for packet processing,
especially real time DPI. In order to do that the server is enabled for instrumentation
also, based on the principles of AXI (ATCA eXtensions for Instrumentation).

Further development we intend is oriented towards advanced M2M (Machine-to-
Machine) communication. This type of communication has a nearly exponential growth,
and in short time should overcome, in volume, the human-to-human (or human-to-
machine) communication.

Last but not least, the real-time packet processing capabilities on ATCA would
enable content-aware / application-aware SDN – software-defined networks to be
implemented and to reach the inferior OSI layers, towards the protocol synthesis and
embedded security.

Acknowledgement
This paper is supported by the Sectorial Operational Programme Human Resources
Development (SOP HRD), ID134378 financed from the European Social Fund and by
the Romanian Government.

References
[1] R. Kuhlmann - ATCA: Advanced Telecom Computing Architecture - Die

Plattform der Zukunft für Telekommunikationssysteme - Franzis Verlag GmbH,
2007 – ISBN 9-7837-7234-1298

[2] PCI Industrial Computers Manufacturers Group - ATCA Short Form Specification
– 2003

[3] Bergstrom E. (2003): Advanced TCA: A Force of One in Telecom & Datacom
Applications. Crystal Cube Consulting

[4] Mellanox Technologies (2009): PICMG 3.2 Advanced Telecommunications and
Computing Architecture

[5] Sandu, F., Costache, C., Balan, T. C., Balica, A. N: “Packet Processing on an
ATCA 40G Platform” 2013, Proceedings of the 4th International Conference on
Recent Achievements in Mechatronics, Automation, Computer Science and
Robotics (MACRo2013), Scientia publishing house, 2013, ISSN: 2247 – 0948,
pp. 227-238 / 239-250 / 251-258; 4-5 October, 2013, Tirgu Mures, Romania

[6] Radisys (2014). Partnering For DPI Deployment. FierceMarkets custom
publishing. Available: http://go.radisys.com /rs/radisys/images/ebook-atca-
partnering-for-dpi-deployment.pdf [last accessed: April 2014]

D. Robu1, C. Costache1, A. Balica1, T. Balan1, F. Sandu1

Packet Processing for Streaming Filtering on ATCA Platforms

61

[7] Verlag Dr. Mueller e.K., 2007 – ISBN 9-7838-3642-9764Freescale
Semiconductor, Inc - DPI Solutions for Telecom Networks – 2008

[8] H. Holma, A. Toskala, K. Ranta-aho, J. Pirskanen - High-Speed Packet Access
Evolution in 3GPP Release 7 - IEEE Communications Magazine, Volume:45,
Issue 12, pp.29-35, 2007 – ISSN 0163-6804

[9] Ipoque GmbH - Smart Traffic Management Policy Control and Charging in
Converging IP Networks, 2012

[10] Alexandru Balica, Cosmin Costache, Florin Sandu, Dan Robu - Deep Packet
Inspection for M2M Flow Discrimination, Integration on an ATCA Platform –
Bulletin of the Air-Force Academy „Henri Coandă” Brasov, Vol XII, No 2 (26)
2014, pag.85-90, ISSN-L: 1842-9238

http://www.afahc.ro/ro/revista/Nr_2_2014/85_BALICA_COSTACHE_SANDU_ROBU.pdf
http://www.afahc.ro/ro/revista/Nr_2_2014/85_BALICA_COSTACHE_SANDU_ROBU.pdf

	Introduction
	ATCA Platform Integration
	The workbench laboratory platform
	ATCA integration in an Intelligent Network architecture
	The Packet Processing Sub-System

	Conclusions

