
Proceedings of the 6th Győr Symposium and 3rd Hungarian-Polish
stand 1 Hungarian-Romanian Joint Conference on Computational Intelligence

Obstacle avoidance in dynamic environments based
on Q-learning and neural networks

M. Duguleana1, A. Nedelcu1 and Gh. Mogan1

1University Transilvania of Brasov, Department of Product Design and Robotics
B-dul Eroilor nr.29, 500036, Brasov, Romania

E-mail: mihai.duguleana@unitbv.ro

Abstract: The presented research targets the problem of mobile robot navigation in
environments that contain both static and dynamic obstacles. The aim of
this article is to present a new path-planning algorithm that provides a
collision-free trajectory within an uncertain workspace. The developed
solution is based on a mix of 2 AI techniques: Q-learning and neural
networks. The experimental results prove the value of the approach.

Keywords: obstacle avoidance, neural networks, Q-learning

1. Introduction
Path planning was always a key feature in the development of autonomous mobile
robots. Over the last 3-4 decades, this subject was divided into 2 research areas,
considering the information of the environment held by the mobile robot [1].

The first research area is based on the global knowledge of the environment. At each
moment, the robot poses complete information about its location within the workspace,
the workspaces itself and the physical constrains of the scene (movement limitations,
obstacles, target position and so on). The main problem that needs to be dealt with is
localization. Let C be a configuration space that describes all possible configurations of
robot. Assuming that navigation is performed in a 2D environment, we practically deal
with 2 workspaces: the obstacles workspace – Cobs, and the free workspace – Cfree. At
the moment, interacting in Cfree is possible thanks to a wide variety of algorithms and
methods such as particle filter localization [2], Wireless Localization based on RSSI [3],
Simultaneous Localization And Mapping [4], and others. A main role is played by the
robot’s sensorial system, which can use GPS, cameras, environment markers and others.

The second approach deals only with local information which is retrieved by
proximity sensors such as sonar [5], infrared [6], laser [7] or video [8]. The key issue is
that there is no guarantee of convergence (target reach). Local minima also pose
navigation difficulties.

Path planning problem was solved by different kinds of solutions: potential fields,
geometrical, grid-based or even artificial intelligence (AI) driven. We adhere to the last,
using a specific reinforcement learning technique called Q-learning, due to several
advantages. Q-learning was introduced in 1989 [9]. One of its strengths is that it doesn’t
require any previous information about the environment. After defining a reward (cost)

15

M. Duguleana, A. Nedelcu and Gh. Mogan:

Obstacle avoidance in dynamic environments based on Q-learning and neural networks

function, the robot that uses Q-learning finds the optimal path (maximum achievable
reward) unattended.

One of the first studies that has implemented Q-learning in robot navigation used a
relatively simple reward function (eq. 1). 1 was assigned to the goal state, -1 for
collision state and 0 for any other states [10]. Although the results were promising (the
robot eventually converged to the solution), the computation times were high. Q-
learning based robot navigation was greatly improved in [11], but still, over 100 training
iterations are required to train the Q-table (the matrix holding Q-values).

Some studies tried to combine Q-learning with other means of AI, in order to increase
the computation performance. In order to handle large sets of state-action pairs, neural
networks were used to store and compute Q-values. A multi-layer neural network is able
map non-linear functions [12]. This feature can be used in conjunction with
reinforcement learning in order to solve the path planning problem, given prior
knowledge of the environment. For this specific case, Q-learning [13] was used with the
following function that quantifies the quality of a state-action:

 (1)

where Q is the set of solutions, S is the set of states and A is the set of actions. The cost
or better said the reward for a collision-free trajectory is given if the mobile robot
reaches the goal. In other words, the proposed solution samples each state, action and
result from the workspace as an underlying probability distribution which helps in
calculating the reward parameter. For fast convergence, the solution makes further use
of a feed-forward neural network.

2. Trajectory planner

2.1. The algorithm

The path planning algorithm presented this paper presents is implemented in a trajectory
planner based on Q-learning [14] and neural networks that can be regarded as a “self-
learning” system. A slightly different solution was already applied with success in
manoeuvring robotic arms [15].

The problem of achieving a collision-free trajectory in dynamic environments has
been reformulated mathematically. Let A be an array of 2D Cartesian coordinates, with
ps the starting position and pe the end position of the mobile robot. The kinematic
mapping of the trajectory of the robot is described as:

 the Cartesian coordinates at moment t (2)

Let the sets of points O1(t), O2(t), ..., On(t) represent the n obstacles located in the
workspace at moment t. Given the start configuration , avoiding obstacles and
reaching the goal resumes to finding while satisfying both
equations:

16

M. Duguleana, A. Nedelcu and Gh. Mogan:

Obstacle avoidance in dynamic environments based on Q-learning and neural networks

 (3)

 (4)
The problem described above can be solved with Q-learning and neural networks. At

any given time t, the mobile robot is in an intermediate state pt and can choose among
different possible future states. The two conditions formulated in eq. 3 and eq. 4 can be
represented within the trajectory planner architecture proposed in fig. 1.

Figure 1. Trajectory planner structure

The eq. 3 means that the mobile robot achieves the target (the algorithm converges).
This condition is modelled by Pos-Net, a 30-20-3 Multi-Layer Perceptron (MLP).
Preliminary tests showed that this configuration is suitable and provides a good
mapping of this nonlinear problem. Pos-Net receives as input the vector which
contains the current position of the robot, the time sample t and the matrix of Q-values.
It outputs a 3 element vector which holds the Cartesian values and the time. The weights
of Pos-Net are updated after each step using the adapt function, which receives as input
the Cartesian coordinates of the goal. After adapt function is applied, a 3 value output
vector is obtained (x, y, t). If a collision is obtained or the maximum number of steps
has been reached without reaching the goal, the weights of Pos-Net are initialized and a
new global iteration is started. Each state has assigned a Q-value that quantifies the
condition expressed in eq. 4. Q-values are updated at each step of the iteration, and
provide information about the collision state. Q-values are computed as described in the
following section and are sent back as input to Pos-Net after each iteration.

2.2. The reward function

The reward function quantifies the decision process, evaluating a score for each action
taken at a given state. The set of states was clustered into 4 types: Safe Sates – SS
(when the robot has a low possibility to collide with an obstacle), Non-Safe Sates – NSS
(when the robot has a high possibility to collide with an obstacle), Wining State – WS
(when the robot reached the goal) and Failure State – FS (when the robot collided with
an obstacle). The reward function is similar to the one proposed by Jaradat [11]:

 (5)

where n is the step number and the distance to the closest obstacle.

17

M. Duguleana, A. Nedelcu and Gh. Mogan:

Obstacle avoidance in dynamic environments based on Q-learning and neural networks

3. Simulation and results
The experiments conducted in this work were implemented in MATLAB, C++/VRML
and on a real robot: PowerBot. The real working environment and its simulated
equivalent are presented in fig. 2.

Figure 2. A 7m x 8m workspace with a robot, obstacles and a target

Safe testing was one of the prerequisites of this study. Testing path planning
algorithms in real environments imposes additional work focused on solving security
issues, hardware malfunctions, software errors and eventual injuries that may appear.
Using VR eliminates all these issues. However, every study should consider at some
point implementing the theoretical research in practice. Every scene entity was carefully
measured, in order to obtain the best possible virtual model. There have always been
inconstancies between real and virtual environment, inconstancies which appear due to
the inexact nature of the measuring process, the friction coefficient, battery power levels
and so on. These differences slightly influence the real trajectories, thus the data
received from the proposed solution is spitted into several parts that wait manual
approval before continuing the robot movement.

The proposed scenario contains 7 static and 2 dynamic obstacles. The start position of
the robot is (70; 50) and the target position (marked with a small red circle in fig. 2) is
(600; 570). The robot is oriented between OY and OX. The dynamic obstacles are
constructed using 2 Amigobot robots covered with a paper cylinder, a setup which
enables their observation by Powerbot’s laser ranger sensor, which scans for obstacles
30cm above the soil (fig. 3). In MATLAB, the robot converges after just 2 epochs, at
the 12th iteration (fig. 4)

Figure 3. Amigobots used as mobile obstacles

18

M. Duguleana, A. Nedelcu and Gh. Mogan:

Obstacle avoidance in dynamic environments based on Q-learning and neural networks

Figure 4. Test scenario

The Amigobots continuously run a movement program which enables them to move
smoothly back and forth on a straight line, between the obstacle and the wall. Near the
obstacles, their sonar readings are lower than 400, thus they stop and change their
movement direction.

The distance travelled by Powerbot is measured odometrically, based on the signals
received from the motor encoders mounted on its wheels. The distance travelled is
measured using TicksMM parameter, which quantifies this distance based on the
number of wheel rotations. TicksMM is defined inside Powerbot’s proprietary software,
ARCOS, and it varies depending on the load of the robot and on the tire pressure. An
initial calibration is made by measuring TicksMM parameter resulted from 1m
movement. After this phase, determining the length of the entire trajectory is fairly easy,
as the TicksMM value can be divided by the 1m calibration value in order to find the
travelled distance in meters. The final length of the trajectory is 9.97 m. The speed of
the robot is initially set at 0.5m/s, and the time spent to reach the target is 23.7s. The
robot is thus moving with a real speed of 0.42 m/s.

4. Conclusions
This paper proposes a new path planning algorithm, with a good convergence ratio,
which is implemented successfully in real and virtual environments containing multiple
static and dynamic obstacles. The trajectories found by the proposed algorithm are
secure, as they specifically take into consideration the geometrical factors posed by the
obstacle avoidance problem. Using VR modelling such as described in this study
provides safer and easier testing capabilities.

Acknowledgement
This work was partially supported by the strategic grant POSDRU/159/1.5/S/137070
(2014) of the Ministry of Labor, Family and Social Protection, Romania, co-financed by
the European Social Fund – Investing in People, within the Sectoral Operational
Programme Human Resources Development 2007-2013.

19

M. Duguleana, A. Nedelcu and Gh. Mogan:

Obstacle avoidance in dynamic environments based on Q-learning and neural networks

References
[1] De Berg, Mark, et al.: Computational geometry. Springer Berlin Heidelberg, 2000.

[2] Dellaert, Frank, et al.: "Monte carlo localization for mobile robots." Robotics and
Automation, 1999. Proceedings. 1999 IEEE International Conference on. Vol. 2.
IEEE, 1999.

[3] Vander Stoep, Jeffrey: Design and Implementation of Reliable Localization
Algorithms using Received Signal Strength. Diss. University of Washington, 2009.

[4] Leonard, John J., and Hugh F. Durrant-Whyte: “Simultaneous map building and
localization for an autonomous mobile robot.” Intelligent Robots and Systems'
91.'Intelligence for Mechanical Systems, Proceedings IROS'91. IEEE/RSJ
International Workshop on. Ieee, 1991.

[5] Kim, Sungbok, and Hyunbin Kim: “Optimally overlapped ultrasonic sensor ring
design for minimal positional uncertainty in obstacle detection.” International
Journal of Control, Automation and Systems 8.6 (2010): 1280-1287.

[6] Alwan, Majd, et al.: “Characterization of infrared range-finder PBS-03JN for 2-D
mapping.” Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on. IEEE, 2005.

[7] Surmann, Hartmut, Andreas Nüchter, and Joachim Hertzberg. "An autonomous
mobile robot with a 3D laser range finder for 3D exploration and digitalization of
indoor environments." Robotics and Autonomous Systems 45.3 (2003): 181-198.

[8] Seder, Marija, and Ivan Petrovic: “Dynamic window based approach to mobile
robot motion control in the presence of moving obstacles.” ICRA. Vol. 7. 2007.

[9] Watkins, Christopher John Cornish Hellaby: Learning from delayed rewards.
Diss. University of Cambridge, 1989.

[10] Smart, William D., and Leslie Pack Kaelbling: “Effective reinforcement learning
for mobile robots.” Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE
International Conference on. Vol. 4. IEEE, 2002.

[11] Kareem Jaradat, Mohammad Abdel, Mohammad Al-Rousan, and Lara Quadan:
“Reinforcement based mobile robot navigation in dynamic environment.”
Robotics and Computer-Integrated Manufacturing 27.1 (2011): 135-149.

[12] Hecht-Nielsen, Robert: “Counterpropagation networks.” Applied optics 26.23
(1987): 4979-4983.

[13] Russell, Stuart J., and Peter Norvig: “Artificial intelligence: a modern approach
(International Edition).” (2002).

[14] Watkins, Christopher JCH, and Peter Dayan: “Q-learning.” Machine learning 8.3-4
(1992): 279-292.

[15] Duguleana, Mihai, et al.: “Obstacle avoidance of redundant manipulators using
neural networks based reinforcement learning.” Robotics and Computer-
Integrated Manufacturing 28.2 (2012): 132-146.

20

	Trajectory planner
	The algorithm
	The reward function

	Simulation and results
	Conclusions

